AD-A205 282

T Ako A4753.1-EC

ILE COPY

Contract No. DAAL0O3-87-K-0090
June 1, 1987 ~ November 30, 1988

PHOENIX, A HIGH-PERFORMANCE UNIX WITH AN EMPHASIS ON
DYNAMIC MODIFICATION, REAL-TIME RESPONSE AND SURVIVABILITY
Submitted to:

U.S. Army Research Office
P.O0. Box 12211
4300 S. Miami Boulevard
Research Triangle Park, NC 27709-2211
Submitted by:

R. P. Cook
Associate Professor

Report No. UVA/525186/CS89/101
December 1988

SCHOOL OF ENGINEERING AND
APPLIED SCIENCE

DISTRIBUTION STATEMENT A
Approved for public release;
[sichution Unlimited

At v b e

DEPARTMENT OF COMPUTER SCIENCE

UNIVERSITY OF VIRGINIA
CHARLOTTESVILLE, VIRGINIA 2290l

89 2 16 028

L IEEINNNNNNN——————_—

ﬂ—-

EX) -

L | SeCURs LASSIFICATI IS PA

REPORT DOCUMENTATION PAGE

1a. REPORT SECURITY CLASSIFICATION |1b. RESTRICTIVE MARKINGS
Unc sified — None
2a. SECURITY CLASSIFICATION AUTHORITY ‘: . DISTRIBUTION/ AVAILABILITY TF RESGRT

Approved for public release;

2b. QECLASSIFICATION / DOWNGRADING SCHED‘ULE distribution unlimited
4. PERFORMING ORGANIZATION REPORT NUMBER(S) S. MONITORING ORGANIZATION REPORT NUMBER(S)
UVA/525186/CS89/101 ARb 24753, |-EL
6a. NAME OF PERFORMING ORGANIZATION 6b. OFFICE SYMBOL | 7a. NAME OF MONITORING ORGANIZATION
University of Virginia (If applicable) Office of Naval Research Resident
Dept. of Computer Science Representative
6c. ADDRESS (City, State, and ZIP Code) 7b. ADDRESS (City State, and ZIP Code)
Thornton Hall ‘ 818 Connecticut Ave., N.
Charlottesville, VA 22901 Eighth Floor
Washington, DC 20006
8a. NAME OF FUNDING / SPONSORING 8b. OFFICE SYMBOL | 9. PROCUREMENT INSTRUMENT IDENTIFICATION NtUMBER
ORGANIZATION (If applicable)
. D 387-K-
U.S. Army Research Office AALO 0090
8c. ADDRESS (City. State, and ZIP Code) 10. SQURCE OF FUNDING NUMBERS
P.0. Box 12211 PROGRAM PROJECT TASK WORK UNIT
4300 S. Miami Boulevard ELEMENT NO. [NO. NO. ACCESSION NO.
Research Triangle Park, NC 27709-2211

11. TITLE (Include Security Classification) .
PHOENIX, A High-Performance UNIX With An Emphasis On Dynamic Modification, Real-Time

Response And Survivability

12 PERSONAL AUTHOR(S)
R. P. Cook

13a. TYPE OF REPORT 13b. TIME COVERED 14. DAT REPORT (Year, Month, Day) {15. PAGE COUNT

Mt Toah oo | rom /287 ro 11/30/84 1§88 Decenber "2 86

16. SUPPLEMENTARY NOTATION The view, opinions, and/or findings contained in this reRort are those
of the author and should not be construed as an official department of the Army positionm,
policy, or decision, unless so designated by other documentation.

17 COSATI CODES 18. SUBJECT TERMS (Continue on reverse if necessary and identify by block number)
FIELD GROUP SUB-GROUP

/
L
19. ASTRACT (Co/tinue on reverse if necessary and identify by block number)

2> The goal of the Phoenix research project/ which is a three year effor)is to develop a high-)

ormance operating system for embedded applications that have a real-time response requirement. The ‘

system is to be extremely modular so that it can be easily adapted to meet different performance goals or v
application restrictions. Phoenix will also support a UNIX-like system call interface for compatibility with &
government standards. There are currently no UNIX operating systems capable of meeting “hard” real- ° DL
time requirements; Ahere are currently no UNIX operating systems that can be easily adapted to meet
application requirements.

We will also investigate the problems associated with modifying an operating system and application
programs remotely without halting the system. For real-time systems, the modifications must be performed
in such a way that the unavailability of the system, or particular modules, is minimized.

Another aspect of the project is the analysis of operating system construction techniques that minim-
ize the unavailability of the system when a power failure or hardware malfunction occurs and that maxim-
ize the ability of a system to "pick up" where it left off. Other areas of investigation include operating sys-
tem structuring techniques, better algorithms, and better system interfaces. (© 4~ _ & -

-

20. O'STRIBUTION/AVAILABILITY OF ABSTRACT 21, ABSTRACT SE%L{RI&Y CLASSIFICATION
Qunciassireomynumtes [SAME As RPT] DTIC USERS Unclassifle

223 MAME OF RESPONSIBLE INDIVIDUAL 'ZZb. TELEPHONE (Include Area Code) | 22¢. OFHCE $YMBOL
Dr. David W. Hislop

DD FORM 1473' 84 MAR 33 APR edition may De used until exnausted.

SECURITY CLASSIFICATION OF THIS PAGE
UNCLASSIFIED

All other editions are oosolete

Ak et
Contract No. DAAL0O3-87-K~0090

June 1, 1987 - November 30, 1988

PHOENIX, A HIGH-PERFORMANCE UNIX WITH AN EMPHASIS ON
DYNAMIC MODIFICATION, REAL-TIME RESPONSE AND SURVIVABILITY
Submitted to:

U.S. Army Research Office
P.0. Box 12211
4300 S, Miami Boulevard
Research Triangle Park, NC 27709-2211
Submitted by:

R. P. Cook
Associate Professor

Department of Computer Science
SCHOOL OF ENGINEERING AND APPLIED SCIENCE
UNIVERSITY OF VIRGINIA
CHARLOTTESVILLE, VIRGINIA

Report No. UVA/525186/CS89/101 Copy No. 17
December 1988

THE VIEW, OPINIONS, AND/OR FINDINGS CONTAINED IN THIS
REPORT ARE THOSE OF THE AUTHOR AND SHOULD NOT BE
CONSTRUED AS AN OFFICIAL DEPARTMENT OF THE ARMY POSI-

TION, POLICY, OR DECISION, UNLESS SO DESIGNATED BY
OTHER DOCUMENTATION.

lo

TABLE OF CONTENTS
List of Appendices
Statement of The Problem
Summary of Results

List of All Publications and Reports
List of All Participating Personnel

Appendices

{ Accoession For ‘
NTIS GRA&I [_j;

DTIC TAB a
Unannounced a
Justisiantion e

By
Diswribution/ |
l Avi{{abgl;ywaodPS
]Avall anéd/or
Special

Dist

M

LIST OF APPENDICES

Appendix I, Minimizing Interrupt Latency

Appendix II, Sample File System Designs

Appendix ITI, A Software Prototyping Environment

Appendix IV, An Introduction to Modula-2

Appendix V, An Introduction to Modular Programming

12

29

49

62

THE PHOENIX PROJECT

Statement of The Problem

The goal of the Phoenix research project, which is a three year effort, is to develop a high-
performance operating system for embedded applications that have a real-time response requirement. The
system is to be extremely modular so that it can be easily adapted to meet different performance goals or
application restrictions. Phoenix will also support a UNIX-like system call interface for compatibility with
government standards. There are currently no UNIX operating systems capable of meeting "hard” real-
time requirements. There are currently no UNIX operating systems that can be easily adapted to meet
application requirements.

We will also investigate the problems associated with modifying an operating system and application
programs remotely without halting the system. For real-time systems, the modifications must be perfarmed
in such a way that the unavailability of the system, or particular modules, is minimized.

Another aspect of the project is the analysis of operating system construction techniques that minim-
ize the unavailability of the system when a power failure or hardware malfunction occurs and that maxim-
ize the ability of a system 10 "pick up” where it left off. Other areas of investigation mclude operating sys-
tem structuring techniques, better algorithms, and better system interfaces.

Summary of Resuits

In the first year of the Phoenix research project, we have some notable accomplishments. First, the
operating system is operational, although not all of the SVID system calls are implemented yet. The code
is non-proprietary so that the operating system can be used by anyone. Also, the system has a number of
unique features.

First, the implementation is layered and modular. Thus, portions of the code that are not applicable
for a given embedded environment can be omitted. The system is also "open", which means that the low-
level operating system interfaces are available to the application programmer, if desired. Thus, it is possi-
bie to add requests to a disk’s device queue without going through the operating system. This kind of ope-
ness is an absolute requirement for certain real-time applications, but need not be used otherwise.

A second feature is the system’s object-based implementation. Each process is represented as a
record of dynamic size whose fields can not only be added and deleted dynamically but also whoee field
types can change dynamically. It took quite a bit of experimentation to derive a mechanism that had the
desired flexibility while remaining cost-effective in execution time. The operating system was actually
rewritten three times to experiment with different ideas. The object-based approach means that one part of
the system can be easily changed without affecting other parts. This information-hiding property is essen-
tial for a system that is intended to be easily adapted to meet different system requirements.

In a traditional UNIX implementation, only one kernel process may execute at a time. In Phoenix,
this restriction is eliminated; thus, the execution of a low-priority task in the kemnel cannot delay the execu-
tion of a high-priority task. Furthermore, a good bit of effort was invested in minimizing lock granularity.
As a result, processes accessing disjoint kemel resources will execute in parallel and will be non-
interfering. A non-interference guarantee is important because it allows a real-time programmer to execute
a task as a test case and then to be assured that in a production version of the system that it will complete in

the same period of time, assuming that the resources that it accesses are disjoint from those used by other
tasks.

In order to take advantage of the performance opportunities afforded by parallelism, two versions of
the operating system were created, one for a traditional uniprocessor machine model and another for a mul-
tiprocessor machine model. Thus, Phoenix can adapt to new technology as well as new application
requirements.

In a real-time system, one of the important performance criteria is the maximum interrupt latency
time. This is determined by the worst-case disabled section of code in the system. In a traditional UNIX

-3-

#

implementation, disabling interrupts to implement critical sections is a standard practice that results in poor
real-time performance. In Phoenix, the use of the DISABLE operator is limited to only two modules. The
maximum interrupt latency time is bounded by the execution tme of the following sequence: 1) enter
READY queue; 2) remove head of READY queue; 3) perform a coroutine transfer. As a side-effect of our
effort to minimize this important parameter, we also discovered a new kernel design that avoids many con-
text switches in a multiprocessor system.

Another aspect of high-performance, real-time systems is avoiding the convoy phenomenon associ-
ated with high-traffic critical sections. We have developed an intention-based locking strategy that can
ameliorate this problem.

Another feature of the Phoenix implementation is its flexible treatment of file systems. For example,
it is possible to have a file system without having file names. For a real-time, embedded application, ten
files might be sufficient so why should the user pay the overhead associated with directories. Similarly, a
file system can be restricted to extents so that the use of index blocks can be eliminated. As the Phoenix
project continues, we will be developing 4 library of such off-the-shelf components so that the application
programmer can mix-and-match to solve their problems. We have also implemented files as objects to
make it easy for applications programmers to meet special-purpose requirements.

As a final point, the most important feature of Phoenix is that it is implemented totally in a host
environment using the StarLite prototyping system. The environment is portable (written in C). As a
sesult, the operating system can be hand-tailored in a pleasant and efficient manner before attempting a
conversion to a bare-machine testbed. The environment can also be used to support benchmarking and
program development. For example, we can time a segment of a real-time task down to the number of
instructions that it executes. This also allows us to make quantitative measurements when comparing
operating system algorithms for efficiency. Finally, the environment allows us to easily share our research
results with any other group without requiring them to purchase hardware identical to our own.

List of All Publications and Reports

(submitted) The StarLite Protot)fing,Architecture to the Third Inter-
national Conference on Architectural Support for Program-
ming Languages and Operating Systems.

(submitted) StarLite, A Software Prototyping Environment to I[EEE
omputer.

(in pregaratiqn) Minimizing Interrupt Latency Time in the Phoenix
perating System. '

(report) An Introduction to Modula-2.
(report) An Introduction to Modular Programming.
List of All Participating Personnel
Veena Bansal, Ph.D. student
Richard Crowe, M.E., December 1987
Chris Koeritz, M.S. student
Richard McDaniel, B.S. student
Prasad Wagle, M.S. student
Jenona Whitlach, M.S., December 1987

L 2.

Nancy Yeager, M.E., June 1988

APPENDIX I

MINIMIZING INTERRUPT LATENCY TIME

Minimizing Interrupt Latency Time
in
The Phoenix Operating System

Robert P. Cook®
Department of Computer Science
University of Virginia
Charlottesville, VA 22903

1.0 Introduction

The Phoenix project represents an attempt to
improve the technology associated with operat-
ing system ccastruction. All software is tested
using the StarLite[1] prototyping environment,
which supports operating systemdevelopment at
the host level. That is. the Phoenix operating
system executes on a virtual machine supported
by an interpreter. The benefit is that new designs
can be tested without resorting to the bare ma-
chine mode of development that is commonly
used.

In this paper, we present the solutions to two
problems that were solved as part of a recent
redesign of the Phoenix kemel. The first problem
was to minimize the kernel's interrupt latency,
which is the time taken fromthe generation of an
interrupt to the beginning of execution by its
handler. The second problem, which will be ex-
plained in a later section, relates to "race" condi-
tions associated with process queuing.

2.0 Minimizing Interrupt Latency

We believe that the Phoenix kernel design is
optimal with respect to minimizing interrupt
latency times. Furthermore, the worst case time
isbounded by aconstantthatcan be derived when

*This work is supported by ARO under contract
DAALO03-87-K0090 and by ONR under contract
NO0014-86-K0245.

the kemel is constructed. The bound is then
invariant across all application programs.

There are some assumptions. First, we assume
that priority-ordering is desirable. Second, only
disable/enable, low-level control is assumed.
Third, device synchronous operations are not
allowed; that is, a user cannot disable interrupts
to manipulate a device's control registers. Fi-
nally, we assume a single processor, although the
technique is also valid for muldprocessors.

Before explaining the idea, we point out that
minimizing the time from the occurrence of an
interrupt to the initiation of its handler is not the
same as minimizing the handler's completion or
response time, which is a function of the availa-
bility of resources, such as locks, and the com-
plexity of the handler's algorithm. The major
impedimentto minimizing interrupt latency time
is the indiscriminate use of disable/enable to pro-
tect critical sections. (Brinch Hansen has named
such a critical section a monolithic monitor.)
We restrict the use of disable/enable to critical
sections associated with process synchronization
operations. In Phoenix, these critical sections are
isolated in two kernel modules, Atomic and Run.

Since disable/enable only occur in the kernel,
the kernel can be analyzed to determine the
disable time of its longest critical sections. This
time indicates the upper bound on the latency of
external interrupts both within the kemnel and for
any user program,

The Atomic module implements a general
semaphore type that can be used for critical sec-
tions, resource counters, or as private sema-
phores. When an Atomic semaphore is used to
protect a critical section, the execution time
within the critical section must be “short”. As a
result, the execution time of the entry/exit code
must be minimized. Therefore, processes wait-
ing to enter a "short" critical section are queued
in FIFO r::her than priority order. Figure 1 lists
the interface specification for Atomic and illus-
trates its use to implement a critical section.
Notice that Atomic uses the Run module in its
implementation.

The P and V procedures have the "standard”
interpretation. The Test procedure is used to
determine the current state (count value) of a
semaphore variable. '

DEFINITION MODULE Atomic;
IMPORT Run;

TYPE Semaphore = RECORD
count : INTEGER;
q : Run.ProcessQueue;
END:; (* Semaphore *)

PROCEDURE InitSemaphore(VAR s:Semaphore;
count:CARDINAL);

(* count=0 - Private Semaphore *)

(* count=1 - Critical Section *)

(* count=N - Resource Counter *)
PROCEDURE P(VAR s:Semaphore);
PROCEDURE V(VAR s:Semaphore);
PROCEDURE Test(VAR s:Semaphore):INTEGER;

END Atomic.

VAR s : Atomic.Semaphore;

Atomic.InitSemaphore(s, 1);

P(s); Disabled
(* critical-section *) Enabled
V(s); Disabled

Figure 1. The Atomic Module

Atomic semaphores are used in othermodules
in the operating systemto implement non-atomic

semaphores, condition variables, monitors, and
other synchronization abstractions, none of
which use disable/enable. The implementations
of P and V are straightforward except for their
interactions with the Run module. Figure 2 lists
the code for Atomic.P.

PROCEDURE P(VAR s:Semaphore);
VAR b:BOOLEAN:;
pp:Run.pProcess;
BEGIN
b := Traps.DISABLE(); (* save old state *)
DEC(s.count);
IF s.count < 0 THEN (* block caller *)
pp = Run.SelfQ;
Run.SetToStop(pp*, 5.9);
PLinks.AddBefore(s.q.tail, pp*.link); (* FIFO*)
Run.SetStop(pp*);
END; (*IF *)
Traps.RESTORE(b); (* restore old state *)
ENDP;

Figure 2. The P Operation

The P operation decrements the semaphore's
count. If it becomes negative, the calling process
is blocked on the semaphore's queue. The PLinks
module exports a doubly-linked list type as well
as delete and insert operators. PLinks does not
protect its critical sections; thus, itdepends on its
caller to maintain the integrity of an operation.
In the case of Atomic, the P operation is indivis-
ible (i.e. disabled); therefore, the call to PLinks is
indivisible. The interaction with the Run module,
which is described in the next section, is the most
interesting part of the implementation.

3.0 The Queuing Problem

The queuing problem occurs when a process
decides to block in a queue (as in Figure 2) atany
level of the system. The code sequence usually
has the attributes listed in Figure 3.

First, the calling process must obtain the lock
that serializes queue operations. Next, the block-
ing criteria is tested (e.g. "count<0" for P). If the

process must wait for the invariant to become
true, the lock must be released and the process
blocked.

The queuing problem results because steps
three and four are not indivisible. That is, an
interrupt can result in the test of a queue’s status,
which then causes the delayed process to be un-
blocked. However, there is a race condition
between the process attempting to block in step
four and the interrupt routine attempting to wake
it. Obviously, the process must enter the queue
before it can be removed.

Get Lock.

Test Blocking Criteria, Update Process Status.
Release Lock.

Process Blocks in Queue.

Results in a context switch to another process.

Ealt ol o

Figure 3. A Typical Delay Sequence

The traditional implementation of this code
sequence, which is listed in Figure 4, solves the
race condition by making steps three and fourin-
divisible. Disabling interrupts is used to protect
the critical section. The benefitof disabling inter-
rupts toeffect the locking is that when the context
switch to the next ready process occurs, the lock
is effectively released. Each process has its dis-
able/enable status encoded in its state vector;
thus, a context switch from a disabled to an
enabled process releases, or opens, the critical
section. The traditional solution has the disad-
vantage that steps three to five can involve arbi-
trary delays, which is inconsistent with the goal
of minimizing interrupt latency.

Get Lock.

Test Blocking Criteria, Update Process Status.
b := Traps.DISABLE();

Release Lock.

Process Blocks in Queue.

Context switch can enable interrupts.
6. Traps.RESTORE(D);

halbadl S S

Figure 4. The Traditional Solution

A second solution can be obtained by imple-
menting a primitive that combines steps four and
five into a single indivisible operation. On the
surface, this might appear to be the same as the
previous solution. However, Step four in Figure
4 can be an arbitrary code sequence. In a software
systemimplemented as a module hierarchy, each
level is free to define its own lock abstraction. If
the release-lock and block operations are com-
bined at a low level, then either every software
layer has to use the same locking mechanism or
the lowest layer has to know about every higher-
layer lock type. The former is overly restrictive
while the latter violates modular programming
principles.

We have experimented with several other
solutions that were even more unsatisfactory and
will not be presented here. The current implem-
entation of the Run module, which is presented
next, represents our best solution to date.

3.1 The Run Module's Solution

The Run module implements a solution to the
queuing problem that is based on a variation of
intention-mode locking(2]. Before releasing the
lock in Step 3 of Figure 3, a process records its
intention to block itself. Atthis point, the "block"
operaton is separated into three steps (1) linking
the process in a delay queue, (2) releasing the
lock, and (3) actually stopping. The steps are
listed in Figure 5, which you may recognize as an
elaboration of the P implementation in Figure 2.

Get Lock.

Test Blocking Criteria, Update Process Status.
pp := Run.Self(): (* Obuain my "wg" *)
Run.SetToStop(pp*. queue); (* Intention *)
Process Is Linked into the Queue.

Release Lock.

Run.SetStop(pp*): (* Process actually stops *)
Results in a context switch to another process.

LYW N~
o ok "

Figure 5. Intention-Based Solution

In order to derive a solution that is correct, we
must examine all possible interleavings of the
block/unblock process sequence. Furthermore,
the Run module's procedures are critical sections
with respect to the process' state information;
thus, the disable time of their implementations
must be accounted for to determine the bound on
latency time. To facilitate the analysis, Figure 6
lists the block/unblock code sequences. Notice
that a process typically blocks itself but must be
unblocked by another process. We assume that,
as was the case in Figure 5, locks protect the in-
divisibility of the first two steps in each opera-
tion.

Block Process (A, B)

Get Lock.

Test Blocking Criteria, Update Status.

pp := Run.Self(); (* Obtain my "tag" *)

. Run.SetToStop(pp”, queue); (* Intention *)
3. Process [s Linked into the Queue.

Release Lock.

A

. Run.SetStop(pp*); (* Process stops *)

UnBlock Process (C, D)

Get Lock.
Test Wakeup Criteria, Update Process Status.
. Process Is UnLinked from the Queue.

. Run.SetToRun(pp*, queue); (* Intention *)
Release Lock.

C

o

4. Run.SetRunning(pp?); (* Processstans*) D

Figure 6. Block/UnBlock Process

The actions associated with steps A and C are
indivisible subject to the integrity of the lock
usage. Steps B and D are indivisible because the
Runmoduleisimplemented using disable/enable
for its critical sections. Therefore, the possible
interleavingsare ABCD,ACBD,and ACDB. We
will examine each possibility in tum to produce
a state-machine implementation that correctly

- 10 -

reflects the legal transitions.

The first case, ABCD, represents the sequen-
tial execution of the rwo code sequences that
comprise the critical section. As a result, there is
no interference and no possibility of error.

In the next two cases, ACBD and ACDB, a
process executes ToStop and then an interrupt
occurs. The interrupt routine, which must be of
higher priority than the running process to be
executed at all, then initiates the ToRun action.

Inthe DB case, the interrupt routine continues
with SetRunning, returns from the interrupt, and
the original process executes the SetStop call. At
this point, the appropriate action is not to stop at
all, just continue execution.

For the ACBD case, the ToRun occurs before
the SetStop. There are two choices. First, we
could record the anticipation of the SetRunning
and then let the process continue execution after
the SetStop. Secondly, the process could be
blocked until the SetRunning occurred. The first
solution, which we adopted, avoids extracontext
switches. The correctness of the implementation
can be guaranteed by allowing only legal state
transitions as illustrated by the diagram in Figure
7 on the next page.

In the diagram, the dashed rectantages indi-
cate a process in the "runnable” state. Such a
process may, or may not, be assigned to a physi-
cal processor. The solid rectangles indicate states
in which a process may not be assigned to a
processor. The legal state transitions are labeled
with the procedure names that are exported by the
Run module. Notice that a process that is the
objectof the ToStop-ToRun-Running-Stop tran-
sition path remains "Runnable”. In the multi-
processor version of the Phoenix kemel, the
process would continue to execute.

3.2 The Solution's Benefits

The Run module's longest critical section

performs two operations: (1) add a process to a
priority queue and (2) perform a context switch
to the process at the head of the "Runnable"
queue. There are a number of well-known tech-
niques for minimizing the insert operation and
the context-switch time is machine-dependent.
Thus, the disable time is minimal, which mini-
mizes the worst-case latency time. The two-
phase solution to the queuing problem supports
modular programming and eliminates the need
for disabled code in any other system modules
(given our assumptions).

4.0 Summary

Only two modules, Atomic and Run, in our
kernel contain disabled code sequences. Any dis-
abled code necessitated by device synchronous
operations must be accounted for separately. The

l Create ,-——L Run *
R r— T s F— ="
un > 11 l < Op_l '

L— (-
ToRun* ToStop V

— o

ToStop V

o —

| <Stop l l

L 4
ToRun V]: EoStop A
r]

| Stop > |

| IS

I

Figure 7. The Run State Diagram

Run A

longest disabled sequence in the kernel is con-
tained in the V operation, which removes the
process at the head of a semaphore queue and
then calls Run for the insert and switch opera-
tions. For a given architecture and implernenta-
tion, the execution time for these operations
provides the upper bound on interrupt response

- 11 -

tme.

Using these abstractions, we have built a
UNIX kemel that is optimized for real-time re-
sponse in both the uni- and multi-processor
environments. For example, there is a Sema-
phore module, but it uses Atomic locks to protect
its priority queues. Thus, while priority queue
insertion in the Run module is disabled, the
priority queue operations in all other modules
execute with interrupts enabled.

The Phoenix brand of UNIX is an "open”
operating system; that is, in addition to the stan-
dard UNIX system calls, any process can take
advantage of the capabilities of any module used
in the kernel's implementation.

References

Cook, R.P., StarLite, A Visual Simulation
Package for Software Prototyping, Second
ACMSIGSOFT/SIGPLAN Symposium
on Practical Software Development En-
vironments, (Dec. 1986) 102-110, also
SIGPLAN Notices 22, 1(Jan. 1987).

Gray, J.N., Notes on Database Operating
Systems, in Operating Systems--An Ad-
vanced Course (Bayer, Graham,
Seegmuller eds.), Springer-Verlag 1979.

(1]

(2]

APPENDIX II

SAMPLE FILE SYSTEM DESIGNS BY STUDENTS

- 12 -

1. INTRODUCTION

This paper discusses the design of a fault-tolerant file system which uses a stable storage abstraction
in order to achieve its faul£ tolerance. The layout of the disk is discussed first. Next, a discussion of error
modes and assumptions follows. Then, a discussion of an on-line recovery mechanism that allows the sys-
tem to be utilized while recovery proceeds is discussed. From this discussion, the maximum ume to

recover from the most catastrophic failure is presented.
2. WELL KNOWN OBJECT DESCRIPTORS

All objects in this file sygwm will be implemented as files and thus each will have an object descrip-
tor. This includes volume descriptors, directories, free lists, and object descriptors. Since object descrip-
tors are to have object descriptors which in turmn require object descriptors, and 50 on, it has been decided
that the descriptors for descriptors will be implemented as a set of "well known" object descriptors which
are provided to the system upon mounting a volume or upon bootup. These well known descriptors are to
be kept in memory and stored either on a separate device or highly redundantly on the same device. Thus,

they should always be available to the system.
3. BUDDY CYLINDERS

Stable storage copies will be placed on what will be referred to from here on out as a "buddy"
cylinder. There are several design choices. If there are an even number of cylinders, we may pair
cylinders n and n+1 fornin {1, 3,5,7,9....}. Thus, for example, cylinders one and two would be buddies,
cylinders three and four would be buddies, and so on. If there are an odd number of cylinders, the last one
would have no buddy in this scheme. We could buddy it with the next to the last cylinder adding to its
share of the burden as well as requiring special handling for the last three cylinders. We could buddy up n

with n+1 for niin {1, 2, 3, ...} with the last cylinder wrapping around to the first. This severely penalizes

- 13 -

the last cylinder in case of a failure. The goal is to have ail buddies in close proximity, and the last cylinder
must make a maximum seek to recover. A further problem with both of these schemes is what happens
when an entire cylinder is lost? Someone loses his buddy! How do we give this cylinder a new, nearby

buddy without complicating things?

To resolve these problems, we adopt the solution of cylinder groups. We don’t pair the cylinders,
but gm{xp them by threes or fours. Thus, we do not have the problem of what to do with the last cylinder,
and many consecutive cylinders would need to be lost before we would need to regroup the cylinders.
Thus, the longest seck would be three or four cylinders to recover. This is not much more of a penalty than
the one required for most cylinders in the above designs. Thus, stable storage pairs in the same cylinder
group will be called buddies. The location of the buddy pairs of an object are stored in the inodes for that

object.

4. VOLUME DESCRIPTOR

There will be two copies of the volume descriptor which will be updated in stable storage fashion.
" The volume descriptors will be implemented as files. The two copies will be placed on different buddy
cylinders and on different surfaces. This assures that both a cylinder and a surface may be lost while still

allowing the volume descriptor to be recovered.

Having a copy of the volume descriptor on each cvlinder in a known location was rejected for
several reasons. First, there would be much wasted space. Second, the time required to update and vali-
date all copies of the volume descriptor would be large. Lastly, blocks go bad dynamically. There is a
placement problem if a new copy of the volume descriptor needs created (i.e. only one of the original has

managed to survive). Where should this new copy be placed so that it can be easily found?

S. FREE LIST

- 14 -

The free list serves two purposes. First, as its name implies, it is the free list. It will also be used as
a label block containing information crucial to recovery. Itis a labeled bitmap with one entry for each sec-
tor. It will be implemented as a file and stable storage abstraction. The free list will be on a cylinder by
cylinder basis, so one of. the copies will be placed on the cylinder for which it is the free list. This may
save seeks. The stable storage copy of this free list will be placed on a buddy cylinder, which will be
defined in the next section. There are four pieces of information in this labeled bitmap that are used in
recovery. These are the names of the two buddy inodes which are used to access this object, the address of
the sector that this free list entry is for, and a flag indicating whether or not the has been checked since the
last failure.

6. INODES

All inodes will be implemented as files, but not all of them need be implefnemcd as a stable storage
file. If the object is not stable, neither is the inode. Storage for each inode will begin in its own sector.
The inodeDate information for all of the inodes will be compacted into one stable storage file and placed in
as few sectors as possible. Thus, the information commonly written is on a different sector to help prevent
failure since the more something is updated, the more likely it is to fail. It is compacted to save space. The
stable storage copies of inodes and inodeDates will also be implemented as files stored on a buddy

cylinder,

The index blocks pointed (0 in the location field (indirect and doubleIndirect blocks) will also be
implemented as files. If the object and its inode are stable, then so is this file. Like all stable storage

objects, its copy is to be placed on a buddy cylinder.

Inodes for files declared to not be stable will be unstable as well - a buddy inode will not be allo-

cated. The inode and data blocks will be marked as unstable in the free list,

There will be a static number of inodes (and therefore objects) in the system. This is because they

-15 -

are 1 be implemented as files themselves, thus requiring an inode to given for it by the bootmount pro-
cedure. The inodes and any stable storage copies that are made may be placed anywhere on the disk. It
wogﬂd be advantageous to place an equal number of inodes on each cylinder. When allocating inodes,
secks may be saved by allocating one on the current cylinder. This is an advantage of having the inodes

spread across cylinders. Another, more important, reason is that the loss of any one cylinder or surface

cannot destroy many inodes.

7. MISCELLANEOUS

Formatting the disk requires laying out the volume descriptors, free lists, and space for inodes on the
disk. The formatting program must return an inode for each of these objects since they are implemented as
files scattered across the disk. These inodes must then be provided to the mount and boot operations so

they may inform the system where these objects are.

When a new inode, volume descriptor, or free list must be made. a new inode must be returned for

use by the boot routines as well as an indication of which of the old ones is no longer valid.

Once the link count for a certain object exceeds a certain number, the object will automatically be
made stable if it is not already. In this way, we guarantee that frequently used objects or objects under
heavy current use will be recoverable. If the object was unstable to begin with. it can be made unstable
once again after the link count decreases sufficiently.

-

Storage allocation should attempt to allocate space on the current cylinder, if possible, to save seeks.
The next step would be to allocate in the same cylinder group, and finally to allocate in different cylinder
groups. How does this fair as the system gets full? Allocation of labeled blocks will be done using a hash
function so that they are spread out and to increase the likeliness (if it is a good hash funcuon) of finding a

free labeled block quickly.

When the user creates a file or directory, he must specify whether or not it is to be stable or not The

- 16 -

link counting rule helps prevent the case where the user really needed a stable storage copy and attempts to
locate this situation for him. If one file in a directory is declared stable, the directory will be made stable as

well.

The secondary field of a DiskAddress for an unstable object will contain a negative address. There
is no need to look at this second address since the inode tells us whether it is stable or not, but this is a

second line of defense.

Since volume descriptors, inodes, and free lists are implemented as files with inodes supplied at
bootup, they need not be placed in labeled sectors. We can always recover them by using a recovery sua-
tegy that uses these initial inodes as well as the information in the free list. If this information is available,

it would most likely be faster than looking at labels as well.
8. FAILURE MODES AND ASSUMPTIONS

This section discusses our assumptions concerning what types of failures may occur and what dam-
age may be done by each of these failure types. Our assumptions concerning failures are as follows :
A power failure either :
- does not interrupt an operation (i.e. occurs before it starts or after it finishes)
- interrupts it in the middle in which case the object is left detectably bad
- if physical damage is done, then only one sector is damaged
Dynamic bad blocks may occur.
Head crashes may occur. All information on ONE cylinder is lost.
With these assumptions, the failure modes are as follows :
i) power failure - no damage, no interruption
ii) power failure - no damage, interruption
iii) power failure - damage, no interruption

iv) power failure - damage, interruption

-17 -

v) dynamic bad block

vi) head crash - lost cylinder, no interruption

vii) head crash - lost cylinder, interruption
Power failures. and head crashes must distinguish the cases where an operation was -interrupted if damage
was done. This is because the damage may be done to another object (for example, while moving from one

stable storage copy to the other). Thus, the original operation would need completed while the damaged
object needs recovered.

Several sector states need not be considered. If the object is unstable, it cannot be recovered. If the
sector was free or bad, we need not worry about restoring it. The only time we need concem ourselves
with this case is when damage was done to the free or bad sector while interrupting an operation on good
sectors. This state is treated the same as failure modes where no damage occurs, but an operation was

interrupted.
9. RECOVERY PROCEDURE

The recovery procedure is discussed in this section. While the previous section presented the
assumptions and types of errors that we set out to handle, the recovery method does not make any assump-
tions as to what type of error occurred or what kind of damage was done. The only requirement imposed
by the recovery procedure is that the system remain stable long enough for recovery to take place. Other-

wise, if objects can be damaged faster than they can be recovered, there is no way to guarantee the

existence of a valid copy of any object.

Upon rebooting, the system will need to validate the data that it has so it knows that the stable copies
are correct. There are a number of choices. Validate the endre file system before resuming any actvity,
validate entries only as they are used, or some intermediate policy in which a certain number of “critical"
objects are validated before resuming user activity. The correct choice depends upon the environment in

which the system is to run. For the current implementation, though, an intermediate stance has been

- 18 -

chosen which allows users to use the system as soon as possible with file system checks taking place along
with user operations. The way this is done is to validate each sector in sequence while providing Flon
demandFP validation and recovery for objects requested by a user that have not already been validated.
The in sequence validation takes the form of a background job which receives N% of the CPU for some

suitably chosen N.

It is assumed that errors in a sector are detectable when that sector is accessed. Thus, the in
sequence checks take the form of attempting to read every sector on the disk. If the read fails, the read rou-
tine calls the recovery routine outlined below to recover that sector. Evenmally, every sector will have
been accessed and the entire disk validated. Even if the read does not fail, the system must still insure that
the object, if it was stable, matches its buddy. Thus, the read routine used in recovery will need to check

this if the read is successful. If the read is unsuccessful, the recovery procedure will handle this operation.

The user’s read routine will need to be able to recover sectors as well. If the user wants to access a
sector that has not been validated, he should not be made to wait for the validation process to catch up to
him. Recovery should take place then and there. This implies that the read operation provided to the user
must be able to access the same recovery routines in case it detects an error or finds a sector that has not
been verified yet. This is important even after the validation process has finished because dynamic bad
blocks do occur, and it is questionable as to whether each instance of a dynamic bad block should require

the entire disk to be revalidated. Thus, these read routines will be the same.

The disk access routines will need modified to perform the required checking and recovery. For
example, define ReadRecover as :

PROCEDURE ReadRecover(Fileld : CARDINAL; VAR Buffer : ADDRESS;
NumBytes : CARDINAL) : INTEGER;
BEGIN

read(Fileld, Buffer, NumBytes);

if error and stable
then recover,;
elsif unstable then mark as bad in free list;
elsif (labelBlock.Checked = false and labelBlock.Stable)

then verifyCopy;
end; (*if*)

- 19 -

_——

o
END ReadRecover:
® where read is the "standard” [/O routine. The other system calls would need similarly redefined. This rou-
tine would be used by both the user and the sequential validation process.
: The sequential validation process works by calling ReadRecover on every sector on the free list with
L
the exceptions being free and known bad blocks. A known bad block is a sector that was previously

marked as bad and which has already been recovered if necessary.

Recovery works as outlined below. It should be noted that should an error occur while performing
this recovery, that error will be recovered in on demand mode. As was already mentioned, the free list
entry for each sector contains the DiskAddress of the buddy inodes which point to this sector, the address
of this sector (so that it may be found in the free list), and a boolean flag that says whether the sector has
besn validated or not. Initially, this flag has been set to zero for every sector as the only bootup recovery
procedure required.

PROCEDURE recover(badSector : DiskAddress);
Open labelBlock containing this sector;
Allocate a new sector;
Search for the entry corresponding to the bad sector;
Get inode locations from free list;
Get offset of bad sector in object from free list;
With inodel do
(i) X :=address in primary location at the given offset;
(ii) Y := address in secondary location at the given offset;
(iii) [F X = badSector _
then Copy contents at address Y to newly allocated sector:;
else Copy contents at address X to newly allocated sector;
END; (* IF *)
(iv) Change the appropriate address, primary or secondary, to
be the address of the new sector;
With inode2 do
repeat steps (i), (i), and (iv)
IF damaged object was an inode
(this information contained in free list)
then write the new "well known" inodes to secondary store
and update in memory.
END; (*[F*)
Mark free list entry for damaged sector as bad;
Update free list entry for newly allocated sector to contain the
appropriate information and mark as having been checked:
END recover;

- 20 -

Verify copy simply accesses the inode and validates that the two copies are identical. If they are not, the

most recent one is copied into the outdated one. The free list is marked as checked.

10. RECOVERY TIME

The worst case in recovery time is when every object is stable and the entire disk must be scanned.
If objects are not stable, they will be noted as being bad but no recovery is taken. Only the free list need be
accessed. If every object is stable, then only half the sectors could need to have recover called on them. If

more than half require this, then data has been lost. The time required for recovery is then :

(NumSectors/2) * (time to recover) +
(NumSectors) * (time to read) +

(NumSectors/2) * (time 10 VerifyCopy)

This assumes that all of the valid sectors come before their invalid buddies so that verifyCopy will be
called for each valid sector. This verifyCopy would then initiate an on demand recovery of its invalid
buddy. If recovery only receives N% of the CPU in any given time slice, validation would complete in <=
(100/N) times the amount of time it would otherwise require. [t is <= since it is expected that users will

spend part of their time recovering in an on demand fashion.
11. OPTIMIZATIONS
When an error occurs, there may be no need to recover the entire disk sequentally if the disk con-
troller can provide information on the locadon of the heads during the operauon in which failure occurred.

For example, if a power failure occurred and the disk controller knew that the heads were betv-een macks 3

and S on cylinder 7, then only the sectors on these affected tracks need to be recovered.

- 21 -

DEFINITION MODULE FileSys:

AddressType = RECORD
surface, track, sector : CARDINAL:/
END; (* AddressType *)

DiskAddress = RECORD
primary, secondary : AddressType:

(* primary = closest, secondary = farthest copies. The secondary copy is
only a suggestion as to where the second copy might be. This
information is outdated after a copy is damaged and before the address
of the new copy can be propogated. *)

END; (* DiskAddress *)

Physical = RECORD
revPerSec : REAL:
blockSize : CARDINAL; (* logical block size *)
sectorsPerTrack,
tracksPerCylinder,
cylindersPerSurface,
numSurfaces : CARDINAL;
MaxDiskAddr : AddressType:
END: (* Physical *)

VolumeDesc = RECORD (* replicated - one on each cylinder =)
(* the volume descriptor will be implemented as a file. The first sector(s)
of this file will contain the tag which is the date this copy was last

updated. *)
version : CARDINAL;
cylinder : CARDINAL; (* whatcylinder do I reside on? *)

environment : Physical:
totalBlocks : CARDINAL; (* number of blocks in this volume *)
numInodes : CARDINAL; (* number of objects allowed =)
name : ARRAY (1..14] OF CHAR;
readOnly : BOOCLEAN;
END:; (* VolumeDesc *)

ContentsType = (INDEX, INODE, DIRECTORY, FREELIST, VOLUMEDESC, DATA):

LabelType = RECORD

inodel, inode2 : DiskAddress: (* where the inodes may be found *)
sectorAddress : DiskAddress:; (* which sector is this the label for? *)
checked, (* has sector been verified since last fail?
free, (* is this sector free or in use? *)

bad, (* is this a bad block? *)

stable : BOOLEAN: (* is this sector stable? *)

contents : ContentsType; (* what is it? =)

END; (* LabelType *)

FreelList = ARRAY [l..sectorsPerCylinder]) COF lLabelType:;

(* The bitmap .s on a per cylinder basis. One copy of the free list
is on the cylinder that it is the free list for. Thus seeks may ke
minimized by finding free blocks on the same cylinder as the free
list. The stable storage copy of the free list is on a "buddy”
cylinder as described in the text.

The free list will be implemented as a file. The first sectcr(s)
of this file will contain the tag which is the date this copy was
last updated. *)

PathElement = ARRAY (l1..14] OF CHAR: (* one element in a path name *)

Directory = RECORD

- 22 -

*)

[

L name : ARRAY (1..MaxLevels] OF PathElement:
{* the use of full path names allows the file system hierarchy to be
reconstructed in case of catastrophic failure. *)
fileId : DiskAddress;
END: (* Directory *)

® Location = RECORD
direct : ARRAY (1l..NumDirect] OF DiskAddress;
indirect, DoubleIndirect : DiskAddress;
END; (* Location *)

inode = RECORD
(* Inodes will be implemented as files. The first sector(s) of these files

® will contain the tag which is the date this copy was last updated. =)
type = (FREE, DEVICE, DIRECTORY, FILE):
stable : BOOLEAN; (* are the object and its inode stable? *)
uid, gid : CARDINAL; (* user and group ids *)
access : Access; (* protection information *)
linkCount : CARDINAL; (* if > N, object made stable if not already *)
location : Location; (* index to blocks of object *)

9 created : Date:; (* when the object was created *)

inodeNumber : CARDINAL:; (* for use in finding offset into dates block =)
END: (* inode *)

inodeDates = RECORD

(* since this info is written with every access, it is separated so that

the critical info is not accessed often. Intuitively, the fewer times
® something is accessed, the less chance for failure. It is to be written

on a labeled sector. This information, for each inode, is compacted
so that it will fit into as few sectors as possible. In this manner,
many dates may be lost with a failure, but there will be a stable copy.
By compacting them in this manner, space is saved.

® InodeDates will be implemented as files. The first sector(s) of these
files will contain the tag which is the date this ccoy was last
updated. *)
inodeNumber : CARDINAL; (* so we can double check that this is the right one *)
lastAccess,
lastModify : Date;
® END; (* inodeDates *)

(* operations in addition to the "standard". *)

MakeStable(name : ARRAY OF CHAR) : INTEGER;
(* takes the name of an object and makes it stable storage if it is not
PY already. It finds a buddy inode which gets a copy of the inode

to be made stable, and both inodes are made stable in the free list.
The object will then be copied. *)

MakeUnstable (name : ARRAY OF CHAR) : INTEGER:
(* takes the name of a file and makes it not implemented with stable
storage. One "buddy" inode is freed, the other is just noted as being
) unstable in the free list. *)

Recover (name : ARRAY OF CHAR) : INTEGER:
(* recovers the specified object from its stable storage copies *)
(* in addition to these, create and makeNode will require an extra parameter
to denote whether they should be stable or not at the outset. All
® operations that alter data will need to alter both copies in a stable
storage fashion. *)

ZND FileSys.

- 23 -

FAILURE MODES AND RECOVERY

I believe that the current state of a sector on the disk may be characterized as follows :
{free, allocated) X {open, closed} X {stable, unstable) X {labeled, unlabeled} X {normal, bad} X (clean, dirty}

This type of information will be used to characterize a sector that suffers a failure.

The allowable operations are : open, close, create, duplicate, Iseek, read, write, makeNode,

absoluteLink, symbolicLink, unlink, changeDirectory, labelSector, makeStable, destabilize, verify, recover.

For failure modes, we made the following assumptions,

A power failure either :
- does not interrupt an operation (i.e. occurs before it starts or after it finishes)
- interrupts it in the middle in which case the object is left detectably bad

- if physical damage is done, then only one sector is damaged
Dynamic bad blocks may occur.

Head crashes may occur. All information on ONE cylinder is lost.
With these assumptions, the failure modes are as follows :

i) power failure - no damage, no interruption

i) power failure - no damage, interruption

iii) power failure - damage, no interruption

iv) power failure - damage, interruption

v) dynamic bad block

vi) head crash - {ost cylinder, no interruption

vii) head crash - lost cylinder, interruption
Power failures and head crashes must distinguish the cases where an operation was interrupted if damage
was done. This is because the damage may be done to another object (for example, while moving from one

stable storage copy to the other). Thus, the original operation would need completed while the damaged

-2 -

;__—

object needs recovered.

Several states need not be considered. If the object is unstable, it cannot be recovered. If the sector
was bad, we need not w-on'y about restoring it. The only time we need concern ourselves with this case is
when the failure does damage to the bad sector while interrupting an operation on good sectors. This state
is treated the same as failure modes on good sectors where no damage occurs, but an operation was
interrupted. The type of recovery used for the assumed failure modes does not use labeled sectors. While
they are useful in the case of catastrophic failure, they are not useful for sable storage. Thus, we don’t care
whether or not the block is labeled. Likewise, the actions taken will not depend on whether or not the
object was opened or closed at the time of failure. The objective will be to retum it 0 its previous state or
to close it, which ever is appropriate for the failure. Thus, in summary

- only concemned with stable objects (can't recover unstable ones)

- failure damaging already bad sector handled in failure modes

- we don’'t care if a sector is labeled or not

- we don't care if an object was open or closed
The states which we must concem ourselves with are : stable X normat X {clean, dirty] X (free,
allocated}. We may only dismiss one failure mode. That is when a power failure occurs causing no
damage and no interruptions. Nothing needs recovering in this case. The other six failure modes must all

be considered.

Of the operations, their effect on the sectors should be reflected through the current state. Thus, we

need not consider operations.
The number of cases that must be considered is thus reduced to 4 X 6 = 24,

We may further reduce the number of cases by notung that when a sector is free there can be no lost
data if it is damaged. Thus, the worst case for a failure concerning a free sector would be if the failure
interrupted an operation concerning other sectors. This is handled the same as the case where the sector is

allocated and there is no damage but the operation is interrupted. If the free sector was damaged, it must

- 25 -

L EE—

also be marked as bad in its free lists and its buddy must be marked as unstabie.

The dirty state may come about in two ways. First, if an operation is interrupted between updates o

stable storage copies, then the two copies are not identical, or are dirty. This is handled in the failure

@ modes in which an interruption has occurred. The second is when a failure has occurred which damages a
copy. This is handled in the failure modes where damage occurs. The only time dirty states come about

and are not already covered is when a failure occurs to an already dirty sector (i.e. before or during the

® recovery action for that object). In this case there are two possibilities. First, there may have been some

operation on the sector that was interrupted although that sector was not damaged. Another sector may be

damaged. This case is treated just like the sector was normal and some failure had occurred 1o make the
sector inconsistent This is only possible since there was no damage done to the sector. As far as the
system is concemed, it may have just been made dirty. The second case is when damage occurs to a dirty
sector. Since it is dirty, it does not have a valid stable storage copy. Thus, the object is lost. This must not
occur too frequently and so we must have assurances that the expected time to failure is less than the
expected recovery time. If the expected time to0 fai}urc is less than the expected recovery time, stability

could be gained by increasing the number of stable storage copies.

With these qualifications, we need only look at the recovery actions required for the sector state

(swable, normal, clean, allocated). The others are derivable from these, as discussed above.
CASE 1 (gxvwer failure - no damage/interruption)

Since there was no damage, but the operation was interrupted, then one of the iwo copies was either only
partially updated or not updated at all. To recover from this, one needs to replace the invalid copy with its

stable storage copy.

CASE 2 (power failure - damaged sector/interruption)

Both a sector was damaged and the operation was interrupted. There are 2 cases for this.

A. The damaged sector occurred in the object of the operation. Since a sector was damaged.,

- 26 -

I ———— e

it may no longer be used as a buddy in a stable storage pair. The recovery actions are :

i) allocate two free buddy sectors

ii) copy undamaged copy of sector to these new sectors
(here is where the interruption is recovered)

iii) deallocate old, undamaged sector

iv) label damaged sector as bad in free lists

v) label damaged sector’s buddy as free and unstable

vi) update links to point to new sectors

B. The damaged sector occurred in an object different from that being operated on (for examgle,

while moving from one stable storage object to its buddy).

i) recover object of operation as in CASE 1.

ii) recover damaged object, if it was stable, as in CASE 2, A.
CASE 3 (power failure - damaged sector/no interruption)
This situation is basically a dynamic bad sector. See CASE 4.
CASE 4 (dynamic bad sector)
Same as CASE 2, A

CASE § (head crash - no interruption)

Must recover an entire cylinder. It does not matter which cylinder since the operation either never started
or already completed (i.e. it wasn't interrupted). For each sector on the lost cylinder, either it was stable or

it was unstable. For stable sectors :

i) We may find the stable storage copy of the free list by looking at its "well known" inode.

This locates the buddy cylinder.

- 27 -

ii) For each stable sector on the lost cylinder, treat it as if a dynamic bad sector had

occurred and perform the steps in CASE 2, A.
CASE 6 (head crash - fnwr}updon)

We must recover the lost cylinder and, if the interrupted operation was not working with the damaged

cylinder, we must recover the object of the operation as well. 2 cases

A. If the head crash occurred on the cylinder the operation was working on, then this case is
just like a head crash with no interruptions. The stable copy is simply used as the good

copy and recovery proceeds as in CASE §.

B. If the head crash did not occur on the cylinder of operation, then it must have occurred

between copies. To recover we must restore the object being operated on and recover the

lost cylinder. We do this by

i) recover the cylinder as in CASE §

ii) recover the object of operation as in CASE 1.
To be done :
Cases where the operation was a recovery operation. How much could be lost? (by the weekend)

For each recovery procedure, investigate what specific operations are involved and how long

they may take with this design. (by the weekend)

Worst case failure and recovery time. (1 week)

Recovery time if, upon restarting the system after a failure, N% of the CPU is devoted to recovery. (?)

- 28 =~

APPENDIX III

A SOFTWARE PROTOTYPING ENVIRONMENT

-29 -

StarLite: A Software Prototyping Environment

1. Introduction

The goal of the StarLite project is 1o test the hypothesis that a host prototyping environment
can be used to significantly accelerate the rate at which we can perform experiments in the areas
of operating systems, databases, and network protocols. This paper discusses the scope of the
StarLite software prototyping project.

A software prototyping environment is a software and/or hardware package that supports
the investigation of the properties of a software system in an environment other than that of the
target hardware. Prototyping tools range from IBM's Virtual Machine operating systems to
discrete-event simulation languages and queuing analysis packages. Except for the VM approach
to prototyping, most systems support only the analysis of an abstraction of a given software
system. Thus, there is the persistent problem of validating the correctness of the model.

The StarLite software prototyping environment combines the benefits of the VM approach
with those of modeling systems. The benefits of the VM approach are attained to the extent that
development is in a host environment rather than on target hardware and that the same software
modules are used for the host analysis and development phases, as well as for embedded testing
on the target hardware.

The components of the StarLite environment include a Modula-2 compiler, a symbolic
debugger, an interpreter for the prototyping architecture, a window package, and an optional
simulation package. The compiler and interpreter are implemented in C for portability; the rest
of the software is in Modula-2. The prototyping environment has been used to develop a non-
proprietary, UNIX-like operating system that is designed for a multiprocessor architecture, as
well as to perform experiments with concur .ncy control algorithms for distributed database

systems. Both systems are organized as :.odule hierarchies composed from reusable
components.

As one measure of the effectiveness of the environment, it is often possible to fix errors in
the operating system, compile, and reboot the StarLite virtual machine in less than twenty
seconds. The total compilation time on a SUN 3/280 for the 66 modules (7500 lines) that
comprise the operating system is 16 seconds. The StarLite interpreter, as measured by Wirth's
Modula-2 benchmark program{1], executes at a speed of from one to six times that of a PDP
11/40, depending on the mix of instructions.

Another measure of the effectiveness of the prototyping environment is the ease of
developing and evaluating application software. Distributed database software, which is one of
the target research areas, is being developed to demonstrate StarLite’s prototyping capability.
The growing importance of distributed database systems in a large number of applications, such
as aerospace and defense systems, industrial automation, and commercial/business applications,
has been well acknowledged, and has resulted in an increased research effort in this area.
However, evaluating the performance of distributed database systems or even testing new
algorithms has required a large investment of time and resources. One of the primary reasons for
the difficulty in successfully evaluating a distributed database system is that it takes time to
develop a system. Furthermore, evaluation is complicated since it involves a large number of
system parameters that may change dynamically. As a result, the field of distributed database
evaluadon currently lags other research areas. Performance results are inconclusive and
sometimes even contradictory (2]. We feel that an important reason for this situation is that many
interrelated factors affecting performance (concurrency control, buffering schemes, data
distribution, etc.) have been studied as a whole, without completely understanding the overhead

- 30 -

imposed by each. An evaluation based on a combination of performance characterization and
modeling iZnecessary in order to understand the impact of control algorithms on the performance

of distributed database systems.

The StarLite system can reduce the time and effort necessary for evaluating new
technologies and design alternatives in distributed database systems. From our past experience,
we observe that a relatively small portion of a typical database system'’s code is affected by
changes in specific control mechanisms. By properly isolating the technology-dependent portions
of a database system using modular programming techniques, we can implement and evaluate
design alternatives very rapidly. Although there exist tools for system development and analysis,
few prototyping tools exist for distributed database experimentation. Especially if the system
designer must deal with message-passing protocols and distributed data, it is essential to have an
appropriate prototyping environment for success in the design and analysis tasks.

When prototyping software systems, there should be assumptions and requirements about
the prototyping environment and the target system. They form the basis for evaluating
prototyping tools and environments. In this paper, we first discuss assumptions and requirements
for prototyping. We then present one of the programming interfaces of the StarLite environment.
One of the benefits of having a prototyping environment such as StarLite is that we can develop
application software that provides rapid answers to technical questions. To demonstrate the
capability of the StarLite environment, distributed database systems have been implemented. The
results of experiments with those systems are described.

2. Assumptions

There are three problems to address when prototyping software: intrinsic, technological, and
software life-cycle problems. Our primary assumption is that the solutons to technological
problems compose a relatively small percentage of a typical system’s code, even though a large
percentage of the design phase may be occupied with technology issues. Thus, the majority of
the code deals with intrinsic problems, such as the protection mechanism for a file server, rather
than with technology issues, such as the access time or capacity of a disk. By properly isolating
the technology-dependent portions of a software system behind virtual machine interface
definitions, software can be developed in a host environment that is separated from the target
hardware.

As IBM discovered with their VM system, it is cost-effective to provide environments
whose sole purpose is (0 support software deveiopment. A host operating system will always
provide a friendlier development environment than a target hardware system. The bare machine
environment is the worst possible place in which to explore new software concepts. For example,
even the recovery of the event history leading up to an error in a distributed system can be a
difficult and, in some cases, an impossible task.

Debugging is greatly facilitated in the host environment. The StarLite symbolic debugger
supports the examination of an arbitrary number of execution "threads”. As a result, the state of a
distributed computation can be examined "as a whole". In addition to aiding fault isolation, the
use of a host environment also facilitates fault insertion. For example, the packet error rate on a
subnet could be increased to determine the effect on an intemet.

Before the use of a host environment becomes feasible, however, it must be possible to
simulate the machine-dependent components of a system on the host. The first step towards this
goal is to require machine-independent interfaces. For instance, rather than referring 10 a
machine status word at an absolute address, the operating system might invoke a procedure to
retumn the word’s value. When the system is executed on the host, the implementation module
corresponding to the procedure would simulate the actions of the target hardware. When
execuiing on the target, the implementation would read the content of the absolute address.

Next, for each device used in 2 project, it is necessary to implement a validated simulation
model. This property is necessary for correctness and for the support of performance studies in
which the analysis of a prototype is used to predict performance on the target hardware. The
results of the virtual machine studies by Canon(3) indicate that these assumptions are reasonable.
With StarLite, it is also possible to execute in a "hybrid" mode in which some modules execute
on the target and some on the host. For instance, the disk for a file server could either be a target
disk system or a simulated disk when the server code is executing on the host.

It is also possible to capture the timing effects of instruction execution, but not to the level
of individual instructions. If that degree of accuracy is required, a VM implementation should be
considered.

The final assumption is for the existence of a high-level language whose compiler supports
separate compilation of units and generates reentrant code. The StarLite system can be replicated
for any such language.

The separate compilation feature is used to "build” a system. For example, the Coroutines
module, which is normally implemented in assembly language, forms the basis for the concurrent
programming kernel, Processes. The concurrent programming kemel is then used to build the
simulation package. Finally, the concurrent programming kemel, the simulation, and window
packages are used to implement the virtual machine interface of the application package. Figure
1 illustrates the module dependencies for a prototyped application both in the host environment
and on the target hardware. Remember that the interfaces presented to the programmer are
invariant; only the implementations change with a switch to a different environment.

In order to facilitate rapid prototyping, we are developing a library of generic device
objects. At present, the object library includes processes, clocks, disks, and Ethemets. Each
device is presented to the user as an abstract data type, which is implemented by using the
simulation package to model its characteristics and the window package to display its actions. As
each data type is instantiated, a window is created to display the operations on that instance and
also to serve as a point of interaction with the user. For example, a disk window provides a profile
view of the device with a moving pointer to indicate head movement and sector selection. In
designing the window interface, the goals were to present uniform options that could be used
either in "hybrid" mode for real devices or in host-only mode. Figure 2 illustrates the StarLite
windows for clocks and Ethemets.

3. Requirements for Prototyping

The primary project requirement for StarLite is that software developed in the prototyping
environment must be capable of being retargeted to different architectures only by recompiling
and replacing a few low-level modules. The anticipated benefits are fast prototyping times,
greater sharing of software in the research community, and the ability for one research group to
validate the claims of another by replicating experimental conditions exactly.

The StarLite prototyping architecture is designed to support the simultaneous execution of
multiple operating systems in a single address space. For example, 10 prototype a distributed
operating system, we might want to initiate a file server and several clients. Each virtual machine
would have its own operating system and user processes. All of the code and data for all of the
virtual machines would be executed as a single UNIX process. Figure 3 illustrates the machine
models supported by the StarLite architecture.

In order to support this requirement, we assume the existence of high-performance
workstations with large local memories. Ideally, we would prefer multi-thread support. but
multiprocessor workstations are not yet widely available. We also assume that hardware details
can be isolated behind high-level language interfaces to the extent that the majority of a system's
software remains invariant when retargeted from the host to a target architecture.

- 32 -

Test System
Ethemnet Clock Disk
Simulation
Processes
Coroutines Window System
Host Operating System

Fig. 1a. Module Hierarchy for the StarLite System

Test System

Ethernet

Clock Disk

Processes

Coroutines

Physical Hardware

Fig. 1b. Module Hierarchy for the Target System

- 33 -

The architectural requirements 0 be satisfied by an interpreter that supports multiple
operating systems running in a single. large address space are interesting. They include high
speed, compact code, exception handling, good error detection, demand loading, dynamic restart,
fast context switches, hybrid execution modes, and portability.

High Speed. Obviously, the speed of the host architecture is a determining factor in the
usefulness of any prototyping effort. Prototyping is most effective for logic-intensive programs,
such as operating systems, because the ratio of code to code-executed-per-function is high. For
example, running user programs at the shell level on top of the prototype operating system, which
is running on an interpreter. provides a response-level comparable (several seconds) to a PDP-11.
As the number of users increase or as the number of data-intensive applications increase, the
response time increases considerably. Data-intensive programs tend to apply a large percentage
of their code to each data point. Thus. the number of data points determines execution speed. In
many cases, having fast machines is the only effective way to prototype data-intensive
applications.

Since the StarLite system uses an interpreter to define its virtual machines, we tend to stay
away from data-intensive test programs. [t would be nice to have an execution speed comparable
to a bare machine, but that could only be achieved by building a software prototyping
workstation. For now, we are satisfied as long as the edit-compile-boot-and-test cycle is
significantly faster than any other environment.

-

4308 2318 3517 tald 3818 204 112 210 iR

070) 810 718 TSE 200 4dC 128 tAa %99 3 2 - s v oL . L
Q078 °1R0 967 °3d6 869 T4 T3y €37 e ., @ - L.
2080 | 2900 QL7 327 3390 2477 33°y M°a 9773 - T,
3868 | 2878 977 379 87F C°H BT°3 ae~c aEey s
W00 | 1370 119F 1I%E G190 i: L TP S
3008 | 209 1387 'a08 1983 il grgun R RN TR B I B
2840 | 2080 2137 (1€ 1300 th o 174 N I T TN
3840 ¢ 1948 1397 laig Ias It oy R N
2000 1239)isf 12ig 1240 a4 Jowsa BN TRV I PRPR
2088 1 cea8 547 aeg tas 1 (EEETNED e e 33 c ;s §

33C2 1 4340 312F 4228 4220 34] Stom 1T a4 e ot 3
29C8 © 1818 3337 w38 4818 1€} £ bapr ca 1 e cs laeyag iy
2008 1223 $1F f2f 0230 G lmemmmmeemypd 0023 33 302 - - e

08 €323 327 o
dd€3 . 4dld 9i.f
20€3 13:9 4500
3263 "3 e
126 - C3ge @Y

Fig. 2. Clock and Ethemet Windows

- 34 -

.................................

Distributed Processors

Multiprocessor

L M J

StarLite
Interpreter

Test
System

Single Processor

| Coroutines j

StarLite
Interpreter

Fig. 3. Machine Models Supported by SwarLite

Compact Code. The generated code for the StarLite architecture is extremely space
efficient since it is based on Wirth's Lilith architecture(4]. For example, the object code (.o file)
sizes for a sample 1,000 line program were SUN3-Modula2(130K), SUN3-C(65K). PC286-

- 35 -

e ————————————

C(35K), StarLite-Modula2(11K). Compact code has a significant effect on the speed with which

the environment can load both system components and user-level programs that might run on

® those components. Compactness also increases cache locality, reduces page faults, and
. maximizes the quantity of software that can be co-resident in the prototyping system.

Exception Handling. The benefits of exception handling support for large system
development have already been documented by Rovner(5].
. "How a program behaves in unusual situations is an essential part of its
o specification. Clear specification is most naturally achieved by outlining
expected behavior separately from the list of the problems or unusual cases that
might arise. Explicit provision in the language for decomposing 2 program into a
normal case part and an exception handler for the exceptional cases improves
predictability, robustness, and reliability."
In the StarLite environment, exception handling is provided through procedure calls to an
Exception module, which is implemented in Modula-2.

Error Detection. The benefits of integrity checking as an essential component of a

language's implementation have been discussed by Wirth{4).

"Guaranteeing the validity of a language's abstractions is not @ luxury, it is a

necessity. It is as vital to inspiring confidence in a system as the correctess of

its arithmetic and its memory access.” :
The StarLite architecture supports checks for overflow/underflcw, division by zero, subrange
subscript checking, NIL pointer checks, illegal addresses, and stack overflow. Subrange and
subscript checks are generated by the compiler.

Demand Loading. The StarLite architecture supporns demand loading; that is, modules are
loaded at the point that one of their procedures is called. Thus, a large software system begins
execution very quickly and then loads only the modules that are actually referenced. For
example, one version of the operating system defers loading the file system, or even the disk
driver, until a file operation is performed.

At the current time, a linker is superfluous; as soon as a module is compiled, it may be
executed. Demand loading and the absence of linking greatly enhances the efficacy of the
StarLite debug cycle. The only limit on debugging is how fast the programmer can discover bugs
and type in the changes. :

Dynamic Restart. When debugging software, it can be annoying to discover an error,
return to the host level, compile, and then run the system to the point of error only to discover
another silly mistake. The StarLite architecture is designed so that an IMPLEMENTATION
module can be compiled in a child process while the interpreter is suspended. That module can
be reinserted into memory and the system restarted. -

Another dynamic restart feature supports the emulation of partial failure as might be
experienced in a distributed system. The Modula-2 compiler does not attempt to statically
initialize any data area. Thus, any module, or set of modules, can be dynamically restarted at any
time without reloading the object modules from disk. For a distributed system, the user can
induce virtual processor failures and then "bring up" the operating system on those nodes without
loading any software from disk.

Fast Context Switches. Unlike the "high-speed” requirement, achieving a fast context
switch time can be realized independent of the characteristics of the host machine. For example,

- 36 -

~ thousands of context switches.

there are no context switches within the @nterpmer. which is basically a C procedure in a closed
loop. Therefore, a host architecture with a sloy context switch time has no effect on the
interpreter's context switch time: it is on}y a function of the state information that must be saved
and reswored. This is an important requirement as a typical operating system “run" can involve

Each implementation of the architecture must be balanced to match the characteristics of
the host machine. The current SUN 37280 interpreter executes 200,000 coroutine
transfers/second. On the other hand, the IBM PS2/50 interpreter executes at 10,000
transfers/second.

Hybrid Execution Modes. In a prototyping environment, it is advantageous to use
services that already exist in the host environment. For example, it is possible to "mount” the
host file system on a leaf of a prototyped file system, or even as the prototype’s "root” file system.
Another example would be to use the host’s database services.

Yet another example occurs in situations where the prototype would execute partially in the
host and partially in a target system. An illustration of this case would be the use of a physical
disk server by an operating system running in the host prototyping environment.

The keys to hybrid execution are architectural support and the definition of interfaces that
remain invariant to changes in implementation technology. For example, the following interface
is used in the operating system.

PROCEDURE Load(VAR programName : ARRAY OF CHAR):BOOLEAN;

It is used by the prototype operating system’s "exec" system call to load user programs into
memory. The interface "hides" implementation details such as the existence of a prototype file
system or the virtual memory architecture. This "information hiding” principle is also used in
designing device interfaces. As a result, the operating system never knows whether devices, such
as disks, or services, such as "Load", are real or are emulated.

Emulation services are usually implemented by VM ROM routines. VM ROM can be used
to provide functionality that the prototype software does not. A VM ROM routine has a
DEFINTTION module but its implementation is part of the interpreter. At execution time, the
architecture intercepts calls to procedures in VM ROM and directs them to C routines. For
example, when prototyping an operating system to experiment with file system issues, it is not
necessary to worry about program management;. VM ROM routines can be used to interface to an
existing file system. At a later stage of development, the VM ROM code can be gradually
replaced with code for a prototype file system.

It is easy to add additional packages to the VM ROM interface. The disadvantage is that all
ROM packages must be co-resident with the interpreter. [n a future version of StarLite under
IBM’s 0S/2, all of the ROM packages will be dynamically linked on demand.

Portability. One of the benefits of developing systems in the StarLite environment is that
the code can be shared with other researchers. To facilitate sharing at the object code level. the
instructons generated by the compiler and its object module format are canonical. That is, the
byte ordering is fixed, as is the character code (ASCII), and the floating point format (IEEE). If
the host has different conventions, the compiler performs the conversions as it generates code.
To the extent that an implementation module is machine invanant, it should be possible to
transmit object modules from one site to another and to have them work.

The StarLite operating system design project is experimenting with the use of "safe"[5],
canonical object modules for user-specified line and protocol filters, schedulers, and application-

- 37 -

specific file systems. For example. the operating system stores method descriptions for file access

in the canonical object code format. The advantage of a canonical representation is that the

volume can be transported to a different machine, which can then interpret the access method to
- manipulate the volume.

4. The Progfamming Interface

In this section, we discuss two different interfaces, one at the machine level and one at the
user level, to illustrate how an interface definition can be used to "hide" environmental concerns
to the extent that prototyped software can be easily retargeted from one machine to another. The
first interface to be presented defines a multiprocessor; the second is for transaction management
in a database system.

4.1 A multiprocessor interface

According to Wirth(1], the coroutine, or thread, is the fundamental data type for
constructing multiprogramming systems. Therefore, it is a concept that remains invariant across
different hardware configurations. As a result, the Coroutine type, as well as the InitCoroutine
and Transfer procedures, are inherited from Wirth's{1] COROUTINE module. The Transfer
procedure is an intra-processor operator; it only performs a context switch between two
coroutines executing on the same processor. '

However, these operators do not form a functionally complete set for a multiprocessor. It
must be possible to assign a coroutine to an idle processor and to stop a coroutine that is running
on another processor. The Status operator can be used to query the state of a processor. It is used
by the operating system {0 determine how many processors are available at boot time. By
convention, the bootstrap coroutine is assigned to processor zero.

The SpinLock data type and operators provide a memory synchronous test-and-set action.
Spin locks are used to implement low-level, non-blocking critical sections. Interrupts and trap
handling are provided by a separate interface, which is not listed. The StarLite virtual machine
multiplexes the virtual processors in such a way that the effect is equivalent to executing a
program on a physical multiprocessor.

The listing for the Mp module follows. together with a multiprocessor test program and its
sample output. The test program, which is booted on processor zero, creates three coroutines.
Each coroutine has a distinct stack for procedure variables but shares any module global
variables. The code for the three coroutines is shared and its action is to continuously print the
identification number for its coroutine. For the example, the identification number is the same as
each coroutine’s processor number. The sample output illustrates the non-deterministic nature of
the execution sequence.

The Mp module has been used to execute a seven processor version of our multiprocessor
operating system. The available memory and swap space on our Sun workstation is the limiting
factor to running even higher number of processors. Apparently, the windows used for each
machine’s virtual terminals consume most of the space.

- 38 -

DEFINITION MODULE Mp: (sevoneree The Interface for & Multiprocessor *****+**¢)

FROM SYSTEM IMPORT ADDRESS:
IMPORT COROUTINE;

CONST NOTAVAILABLE = 0; (vetesvecssosess Processor states *oosessesassesas)

IDLE=1; .
RUNNING = 2;
SPINNING = 3;

TYPE SpinLock;
{® A variable of typs SPINLOCK is used to “protect” critical sections.

PROCEDURE Spinlnit(VAR s:SpinLock);
(* This routine initislizes 8 SPINLOCK prior to its use.

PROCEDURE SpinIn(VAR s:Spinlock);

(* This routine is executed prior (o entering a critical section.

(® If the critical section is available, the processor enters and is

(* guaranteed exclusive access. If the critical section is not available,
(* the processor spins unul the SPINLOCK allows entry.

PROCEDURE SpinOut(VAR s:SpinLock);

(* This routine is executed on leaving a cridcal section.

(* If one or more other processors are SPINNING, one of them is chosen to enter.

(* The others continue SPINNING.

TYPE Coroutine = COROUTINE.Coroutine;

(* A variable of type COROUTINE is used to identify a “thread”,

(* This variable is set by the INTTCOROUTINE procedure when the coroutine
(® is initialized. [t may then be used to reference the coroutine

(* when performing a TRANSFER operaton.

PROCEDURE InitCoroutine(p : PROC; stack : ADDRESS; size : CARDINAL;
VAR coroutine : Coroutine);

(* This routine creates a coroutine starting at procedure “p” with stack

(* at sddress “stack” and of size "size”. The coroutine identifier for

(* the newly created coroutine is returned in the vanable “coroutine”.

PROCEDURE Transfer{ VAR from, to : Coroutine);
(* This routine just implements a simple context switch from
(* coroutine "from" to coroutine “to".

PROCEDURE Begin(processor : CARDINAL; VAR to : Coroutine);
(® This routine assigns a coroutine to an IDLE processor.

PROCEDURE Stop(processor : CARDINAL; VAR from : Coroutine);
(* This routine returns & processor to the [DLE state.

PROCEDURE Starus(processor : CARDINAL):CARDINAL:
(* This routine retums the status (NOTAVAIL, IDLE. RUNNING, SPINNING)
(* of the selected processor.

END Mp.

-39 -

°)

*)
)
*)

*)
*)

*)

*)

*)

A Multiprocesssor Test Program

MODULE mst;

" IMPORT Mg
FROM SYSTEM IMPORT ADR:
IMPORT InOut, Sequence;

VAR prel, pre2, pre3 : Mp.Coroutine;
plStk, p2Stk, p3Stk : ARRAY (1..500] OF CARDINAL;

PROCEDURE codsForEach(); (* this code is shared by all the processors *)
VAR i, loopCat : CARDINAL: (* but the local data is unique per processor *)
BEGIN
i 1= Sequence.Count(); (* returns the next number in a sequence, a processor id *)
loopCnt := 0;
LOOP
InOut WriteCard(i, 1);
IF loopCnt MOD 50 » 0 THEN InOut. WriteLn(); END;
INC(loopCnt);
END;
END codeForEach;
VAR c: CARDINAL;
BEGIN
Mp.InitCoroutine(codeForEach, ADR(p1Stk), SIZE(p1Sik), prel);
Mp.InitCoroutine(codeForEach, ADR(p2Stk), SIZE(p2Stk), prc2);
Mp.InitCoroutine(codeForEach, ADR(p3Sik), SIZE(p3Stik), prc3);
MpBegin(1, prcl); (® start prcl on processor | *)
MpBegin(2, pre2); (* start prc2 on processor 2 *)
c:=0;
LOOP
InOut Write("0™);
INC(e);
IF ¢ MOD 50 = 0 THEN InOut.WriteLn(); END
IF (¢ MOD 10)=1 THEN Mp.Stop(1, prcl); MpBegin(1, pre3); (* multiplex pre1/3 on processor 1 ¢)
ELSIF (¢ MOD 10)=8 THEN Mp.Stop(1, prc3); Mp.Begin(1, prel);
END;
END;
END test.

Sample Output for Four Processors

02

222222222222222222222222222222222222200000002222222222222
222222222222222222222222220003
33333333333333333333333333333333222222222222222222222222
222222222222222222200000001

INMIHNIN NI T01111122222222222222222222222222222 22
222222222222000000333333333333333333
33333333333333333333333332222222222222222222222222222202222222
222220000011111111111111

TN 11 11111222222222222222222222222222222222222
222220000003333333333333333333333333

4.2 A distributed transaction management interface

The transaction management interface of the StarLite prototyping environment is designed
to facilitate easy extensions and modifications. Server processes can be created, relocated. and
new implementations of server processes can be dynamically substituted. It efficiently supports a

- 40 -

distributed database functions at the operating system level, and facilitates the
mg of multiple "views" with diffemm. d\gractexisﬁcs. For c;perimcmdon. system
functionality can be adjusted according 10 application-dependent requirements without much
. overhead for new system setup. Since one of the design goals of the StarLite system is to conduct
an empirical evaluation of the design and implementation of application software for operating
sysiem, communication protocols, and transaction management, it has built-in support for
performance measurement of both elapsed time and blocked time for each transaction(6).

The transaction management prototype provides support for concurrent muiti-transaction
execution, including transparency to concurrent access, data distribution, and atomicity. An
instance of the prototyping environment can manage any number of virtual sites specified by the
user. Modules that implement transaction processing are decomposed into several server
processes, and they communicate among themselves through ports. The clean interface between
server processes simplifies incorporating new algorithms into the prototyping environment, or
testing alternate impiementations of algorithms. To permit concurrent transactions on a single
site, there is a separate process for each transaction that coordinates with other server processes.
Figure 4 illustrates the structure of the transaction management prototyping environment.

The User Interface (UI) is a front-end invoked when the prototyping environment begins.
Ul is menu-driven, and designed to be flexible in allowing users to experiment various
configurations with different system parameters. A user can specify the following:

User Interface

Configuration Manager Performance Monitor

Transaction Generator

Servers Transaction Manager

Resource Manager DB

Message Server

StarLite System

Fig. 4. Structure of the Transaction Management Prototyping Environment

- 41 -

e system configuration: number of sites and the number of server processes at each site.

o database configuration: database at each site with user defined structure. size. granularity, and
levels of replication.

o load characteristics: number of transactions to be executed, size of their read-sets and write-
sets, transaction types (read-only or update) and their priorities, and the mean interarrival time
of transactions.)

e concurrency control: locking, timestamp ordering, and priority-based.

e failure characteristics: the site and the time of a crash, and the type of recovery to be
performed.

Ul initiates the Configuration Manager (CM) that initializes the data structures necessary
for transaction processing from user specifications. CM invokes the Transaction Generator at
appropriate time intervals 0 generate the next transaction to form a Poisson distribution of
transaction arrival times. When a transaction is generated, it is assigned an identifier that is
unique among all transactions in the system. Transaction execution consists of read and write
operations. Each read or write operation is preceded by an access request sent to the Resource
Manager, which maintains the local database at each site. If the access request cannot be granted,
the Traiisaction Manager (TM) executes either a blocking operation to wait until the data object
can be accessed, or an abort procedure, depending on the situation. Transactions commit in two
phases. The first commit phase consists of at least one round of messages to determine if the
transaction can be globally committed. Additional rounds may be used to handle potential
failures. The second commit phase causes the data objects to be written to the database for
successful transactions. TM executes the two commit phases to ensure that a transaction commits
or aborts globally.

The Message Server (MS) is a process listening on a well-known port for messages from
remote sites. When a message is sent to a remote site, it is placed on the message queue of the
destination site and the sender blocks itself on a private semaphore until the message is retrieved
by MS. If the receiving site is not operational, a ime-out mechanism will unblock the sender
process. When MS retrieves a message, it wakes the sender process and forwards the message to
the proper servers or TM. The prototyping environment implements Ada-style rendezvous
(synchronous) as well as asynchronous message passing. Inter-process communication within a
site does not go through the Message Server; processes send and receive messages directly
through their associated ports.

The inter-process communication structure is designed to provide a simple and flexible
interface to the client processes of the application software, independent from the low-level
hardware configurations. [t is split into three levels of hierarchy, as shown in Figure §.

The Transport layer is the interface to the application software, thus it is designed to be as
abstract as possible in order to support different port structures and various message types. In
addition, application level processes need not know the details of the destination device. The
invariant built into the design of the inter-process communication interface is that the application
level sender allocates the space for a message, and the receiver deallocates it. Thus, it is
irrelevant whether or not the sender and receiver share memory space, i.e., whether or not the
Physical layer on the sender’s side copies the message into a buffer and deallocates it at the
sender’s site, and the Physical layer at the receiver’s site allocates space for the message. This
enables prototyping distributed systems or multiprocessors with no shared memory, as well as
multiprocessors with shared memory space. When prototyping the latter, only addresses need to
be passed in messages without intermediate allocation and deatlocation.

The Physical layer of message passing simulates the physical sending and receiving of bits
over a communication medium, i.e., it is for intersite message passing. The device number in the

- 42 -

.........................

: client :
Transport.Send
Transport.Receive

Transport.Receive

- y same

Network.Send site?
) Network Recieve
o Physical.Receive
Physical.Send (Message Server)

Communicanon device

Fig. S. Inter-Process Communication

interface is simply a cardinal number: this enables the implementation to be simple and
extensible enough to support any application. To simulate sending or to actually send over an
Ethemnet in the target system, for example, a module could map network addresses onto cardinals.
To send from one processor to another in a multiprocessor or distributed system, the cardinals can
represent processor numbers.

Messages are passed to specific processes at specific sites in the Network layer of the
communications interface. This layer serves to separate the Transport and the Physical {a, 2rs, so
that the Transport layer interface can be processor- and process-independent and the Physical
layer interface need be concerned only with the sending of bits from one site to another. The
Transport layer interface of the communication subsystem is implemented in the Transport
module. A Transponi-level Send is made to an abstraction called a PortTag. This abstraction is
advantageous because the implementation (i.e., what a PortTag represents) is hidden in the Ports
module. Thus the PontTag can be mapped onto any port structure or the reception points of any
other message passing system. The Transport-level Send operation builds a packet consisting of
the sender’s PontTag, used for replies, the destination PortTag, and the address of the message. It
then retrieves from the destination PortTag the destination device number. If this number is the
same as the sender’s, the Send is an intra-site message communication, and hence the middle-
level Send is performed. Otherwise the send requires the Physical module for intersite

- 43 -

communication. Note that accesses 10 the implementation details of the PortTag are restricted to
the module that actually implements it; this enables changing the implementation without
recompiling the rest of the system. As shown in Figure 6, the Transport module, which is the
highest-level interface of the inter-process communication structure for the client processes, is
very simple and elegant, and it achieves the desired flexibility. ’

S. Prototyping a Multiversion Database: An Experiment

To evaluate the prototyping environment, we have implemented a multiversion database
system and its corresponding single-version database system using the environment, and
performed a series of experiments for performance comparison between them. The experiments
were focused on a sensitivity study of the key parameters that affect performance, such as set
size, transaction read/write ratio, interarrival time, and the database size.

In a multiversion database system, each data object consists of a number of consecutive
versions. The objective of using multiple versions is t0 increase the degree of concurrency and to
reduce the possibility of rejecting user requests by providing a succession of views of data
objects. One of the reasons for rejecting a user request is that its operations cannot be serviced by
the system. For example, a read operation has to be rejected if the value of data object it was
supposed to read has already bec:1 overwritten by some other user request. Such rejections can be
avoided by keeping old versions of each data object so that an appropriate old value can be given
to a tardy read operation. In a system with multiple versions of data, each write operation on a
data object produces a new version instead of overwriting it. Hence, for each read operation, the
system selects an appropriate version o read, enjoying the flexibility in controlling the order of
read and write operations. When a new version is created, it is uncertified. Uncertified versions
are prohibited from being read by other transactions to guarantee cascaded-abort free(7). A
version is certified at the commit time of the transaction that generated the version. The

DEFINITION MODULE Transport;

FROM SYSTEM IMPORT BYTE, ADDRESS;

FROM Ports IMPORT PortTag;

PROCEDURE Send(pt : PortTag; VAR mess : ARRAY OF BYTE);

(* This Send is the highest-level, the ransaction’s interface. *)
(* Send inverts PortTag t0 <processor number, Port number>. *)
(* If the processor number is different from the sender's, *)
(* Physical level Send is called, which sends w0 a different site. *)
PROCEDURE Receive(pt : PonTag) : ADDRESS;

(* This routine is called by the destination process. *)
(* If the message has not arrived at the port associated with the PortTag, *)
(* the destination process will be blocked. *)
(* When a message arrives at that port, this routine returns *)
(* the address of the message. *)
PROCEDURE NonblockReceive(pt : PortTag) : ADDRESS;

(* This routine is a non-blocking version of the Receive explained above. *)
(* The destination process is not blocked if there is no message. ")
END Transport.

Fig. 6. Transport Module

- 44 -

databese we have implemented is based on timestamp ordering. Each data
;wmmd a?;“?h: of versions, and each version is associated with tmestamps for its
creation and the latest read, and a valid bit (o specify whether the version is certified.

Each transaction consists of read and write requests for data objects. Read requests are
never rejected in a multi-version database system if all the versions are retained. A read operation
does not necessarily read the latest committed version of a data object. A read request is
transformed to a version-read operation by selecting an appropriate version 10 read. The
timestamp of a read request is compared with the write-timestamp of the highest available
version. When a read request with timestamp T is sent to the Resource Manager, the version of a
data object with the largest timestamp less than T is selected as the value to be retumed. The
timestamp of a write request is compared with the read timestamp of the highest version of the
data object. A new version with the timestamp greater than the read-timestamp of the highest
certified version is builit on the upper level, with the valid bit reset to indicate that the new version
is not certified yet. In order to simplify the concurrency control mechanism, we allow only one
temporary version for each data object. Inserting a new version in the middle of existing valid
versions is not allowed.

The experiment was conducted to measure the average response time and the number of
aborts for a group of transactions runnilg on a multiversion database system and its
corresponding single-version system. Two groups of transactions with different characteristics
(e.g., type and number of access to data objects) were executed concurrently. The objective was
to study the sensitivity of key parameters on those two performance measures. The details of this
study are given in (8]. Here we present our findings briefly.

Performance is highly dependent on the set size of transactions. As shown in Figure 7, a
muitiversion database system outperforms the corresponding single-version system for the type
of workload under which they are expected to be beneficial: a mix of small update transactions
and larger read-only transactions. The reason for this is that, in a multiversion database system, a
read requests have higher priority than the write requests; whereas the priority for read requests is
not provided in a single-version system. Therefore, in a single-version system, the probability of
rejecting a read request is equal to that of a write request. The experiment shows that a single-
version database system outperforms its multiversion counterpart for a different transaction mix.

It was observed that the performance of a multiversion system in terms of the number of
aborts is beter than its single-version counterpant for a mix of small update transactions and
larger read-only transactions. Similar experiments have been performed by changing the database
size and the mean interarrival time of transactions. It was found, however, that the main result
remains the same. From these experiments, it becomes clear that among the four variables we
studied, the set-size of transactions is the most sensitive parameter for determining the
performance of a multiversion database system. This experiment demonstrates the expressive
power and performance evaluation capability of the StarLite prototyping environment.

6. Summary

The StarLite system is a prototyping environment that supports the investigation of the
properties of application as well as system software: operating systems, database systems, and
communication networks. The benefits of real-time software development in a protwtyping
environment are many-fold: 1) errors are reproducible, 2) design alternatives can be evaluated in
a uniform environment, 3) target hardware performance can be scaled, 4) software modules can
be dynamically restarted without reloading, and 5) software and experimental results can be
easily shared with researchers at different institutions.

The StarLite system supports an "open" systems architecture that allows the application
engineer to exercise control over design decisions at every level of the system hierarchy. Not only

- 45 -

is the system functionally useful at many different interface levels, but also the implementations
behind the interfaces can be modified to address application requirements. Furthermore, the
system can be easily tilored W different experimentai requirements. The implementation is
object-oriented in order to support experimentation.

The StarLite system has been operational for a year. It is being used to develop operating
systems, distributed database systems, and new network protocols. The architecture has been the
"glue" that has enabied the other pieces of the environment to be put together in a way that
maximizes a researcher’s productivity.

While the initial version of the environment executes as a single UNIX process, future
versions could take excellent advantage of both load balancing w distribute a running prototype
across a number of machines and of multiprocessor support, such as is found in Mach or Taos.

7. Acknowledgements

The StarLite project is supported by grants of equipment and software from Modula
Corporation. The project is funded by the Army Research Office Contract No. DAALO387-K-
090, by the Office of Naval Research Contract No. N00014-86-K-0245, and by IBM Corporation
under University Agreement WF-159679,

- 46 -

s single-version

500
Average 400+
response
ﬁme 3m-'

200 —

100 — 1]] | 1 | |] l

10 20 30 40 S0 60 70 8 9 100
of transactions

PARAMETERS

Group 1 : Setsize = 10, Type = READ-only, Transaction Ratio = 80%
Group 2 : Setsize = 2, Type = WRITE-only, Transaction Ratio = 20%

804 = single-version
muld-version

0 {

10 20 30 40 SO 60 70 80 9 100

of transactions
PARAMETERS
Group 1 : Setsize = 2, Type = READ-only, Transaction Ratio = 20%
Group 2 : Setsize = 10, Type = WRITE-only, Transaction Ratio = 80%

Fig. 6. Performance of Multi-version and Single-version Systems

- 47 -

M)
@
)
@
®)

(6)

)

®

References

Wirth, N., The Personal Computer Lilith, ETH Zurich, Institut fur Informatik Technical
Report 40, (April 1981).

Wolfson, O., The Overhead of Locking (and Commit) Protocols in Distributed Databases,
ACM Trans. Database Systems 12, 3 (Sept. 1987), 453-471.

Canon, M.D. et al, A Virtual Machine Emulator for Performance Evaluation,
Communications of the ACM 23, 2 (Feb. 1980), 71-80.

Winth, N., Microprocessor Architectures: A Comparison Based on Code Generation by
Compiler, Communications of the ACM 29, 10 (Oct. 1986), 978-994.

Rovrner, P., Extending Modula-2 To Build Large, Integrated Systems, /EEE Sofiware 3, 6
(Nov. 1986), 46-57.

Son, S., A Message-Based Approach to Distributed Database Prototypins, Fifth IEEE
Workshop on Real-Time Software and Operating Systems, Washington, DC, (May 1988),
71-74.

Bemstein, P., V. Hadzilacos, and N. Goodman, Concurrency Control and recovery in
Database Systems, Addison Wesley, 1987.

Son, S. and Y. Kim, A Prototyping Environment for Distributed Database Systems,

Technical Report TR-88-20, Dept. of Computer Science, University of Virginia, (August
1988).

- 48 =

APPENDIX IV

AN INTRODUCTION TO MODULA-2

- 49 -

f——*

AN INTRODUCTION TO MODULA-2
For

Pascal Users

1.0 A Comparison of Pascal and Modula-2

Modula-2[1,2] grew out of a practical need
for a general, efficiendy implementable, sys-
tems programming language. Its ancestors are
Pascal{3] and Modula(4]. From the latter, it has
inherited the name, the important module con-
cept, and a systematic, modemn syntax; from
Pascal, most of the rest. This includes in particy-
lar the data structures, i.e. arrays, records, vari-
ant records, sets, and pointers. Structured state-
ments include the familiar [F, CASE, REPEAT,
WHILE, FOR, and WITH statemeants.

This Report reviews the differences between
Pascal and Modula-2. It is not intended to teach
you how to program in Modula- 2. For that purpose,
the definidons by Wirth(1, 2] should be consulted.
The implementation assumes that the target com-
puter uses byte-addressing and has a 16-bit word
size.

1.1 Identifiers

Identifiers are defined the same as in Pascal.
Modula-2, however, is case sensitive. For ex-
ample, the keyword "[F" is onlyrecognized inits all
caps form.

Examples:
X scan starMod firstLetter testl
1.2 Numbers

The Pascal number format is expanded to allow
octal and hexadecimal constants to be expressed.
Furthermore, the type CARDINAL is added to ex-
plicitly represent unsigned, 16-bit integers, and
LONGINT is provided for 32-bit integers. Some

- 50 -

important values for these types are as follows:

MIN() MAX()
INTEGER -32768 32768
CARDINAL 0 65538
LONGINT -2147483648 2147483647
REAL -1.0E-3§ 1.0E+35§

A decimal LONGINT constantis different from
an INTEGER in that it must have a "D" following
the lastdigit. Even a very large number must have
the D. For an octal or hexadecimal LONGINT,
the value of the number must either be too large
for an integer or it must have enough leading
zeroes to make the number at least six digits
long.

Examples:

1980
3764B
0CADH
CADH
48H
236713D

decimal

octal (denoted by the trailing “B™
hexadecimal (denoted by the trailing “H'™)
an idendfier, not a number

hexadecimal, leading zero is not required
decimal LONGINT (denoted by the trailing
D"

octal LONGINT

octal LONGINT with leading zeroes
hexadecimal LONGINT

hexadecimal LONGINT with leading zeroes

3561658
000121B
36FAS1H
000029H

REAL numbers are supported in Modula-2 in
precisely the same manner as Pascal. All REAL
numbers must have a decimal point and must
start with a digit; although, digits are not re-
quired in the fraction. An exponent field is also
supported, but is optional.

Following the fraction portion of the REAL
number, an "E" must precede the exponent. The

f_-

L
exponent has a range from -35 to 35. The unary as identifiers. ‘me Modula-2 symbols, which
plus("+")mbeplnedmp°8iﬁvcexp°°en°”m differ from Pascal’s, are listed le.
opdon. Symbols That Are The Same As Pascal
o Examples: + - . / -,
5.32 typical REAL , N { { (} 1)
433. REAL without fraction poruod A = < > <> <= >=
3.34E-22 REAL with negative exponent] AND
- 8328E31 REAL with positive exponcat BEGIN CASE CoNST
® 12.3E+22 also a positive exponent DIV DO ELSE
L3 Characters and strin END FALSE FOR
e | FORWARD F
Both the double quote character (') and single IN MOD NIL
quote(’) may be used as quote marks. However, the NOT OF OR
® opening and closing marks must be the same PROCEDURE RECORD
character, and this character cannot occur REPEAT SET THEN
within the string. A string must not extend over TO TRUE TYPE
the end of a line. A string, consisting of a single- UNTIL. VAR WHILE
character, is of type CHAR; a string consisting WITH
f n>1 characters is of
o ° 1S of bype Symbols Deleted From Pascal
ARRAY [0..n-1] OF CHAR.)
downto replaced with a BY clause.
By convendon, many of the library modules file I/O was deleted from Pascal in fa-
use the null character, ASCII code 0, to delimit the vor of services provided by /O
PY end of a string. The storage for constant strings modules.
ends with the null automadcally. Any string that fyncron PROCEDURE is used instead.
the user creates should end with the nullinorderto goro, label replaced by the LOOP statement.
work properly with string functons. packed the only choice in Modula-2.
There is also a notation to represent characters Program replaced by MODULE.
® that are not in the language’s character set. A
sequence of digits terminated with a “C” is inter- Symbols In Modula-2 But Not Pascal
preted as an octal value of type CHAR. For ex- | # - BY
ample, “123C” has the same value and type as DEFINITION ELSIF
° “CHAR(123B)". EXIT EXPORT
FROM IMPLEMENTATION
E les:
xampies IMPORT LOOP
123C “Modula” MODULE POINTER
“Don’t Worry!™ ‘a “quoted” word' PROC QUALIFIED
) RETURN
® 1.4 Operators, delimiters, and comments
Operators and delimiters are the special Comments may be inserted between any two

characters, character pairs, or reserved words SYmbolsinaprogram. A comment is an arbitrary
listed below. The reserved words consist exclu- character sequence opened by the bracket*(*" and
sively of capital letters and MUST NOT be used closed by “*)". Comments may be nested and they

- T AR ST |1} A P

- 51 -

do notaffect the meaning of a program. The nesting
allows arbitrary sections of a program o bé com-
mented out for testing purposes.

LS Deciarations

As in Pascal, every identifier must be declared
within a block. A block in Modula-2, however, can
be delimited by either the MODULE or PROCE-
DURE keyword. Unlike Pascal, the declaratons
within a block can occur in any order and can be
repeated. Another difference is that constant ex-
pressions can be used wherever a constant is al-
lowed. Finally, since this implementation is a one-
pass compiler, ALL SYMBOLS MUST BE
DECLARED BEFORE USE.

1.5.1 Constant declarations

Constant declarations are the same as Pascal,
except for the use of constant expressions.

Examples:

CONST N = 100; (* N stands for 100 *)
LIMIT = 2*N-l; (* LIMIT is for 199 *)
ODDS = BITSET{(1,3,5)

1.5.2 Type declarations

The simple types in Modula-2 consist of enu-
meraton types, subrange types, or type identfiers,
which may be qualified. In this context, the term
“qualified” means preceded by a module idendfier
and a period. This option is not present in Pascal.
The qualification may be necessary to refer to0 a
type that is in a QUALIFIED EXPORT list or the
definition module of another module. The follow-
ing simple types are denoted by standard identifi-
ers:

INTEGER A variable of type INTEGER

assumes as values the integers between

MIN (INTEGER) and MAX (INTE-

GER).

CARDINAL Avariable of type CARDINAL
assumes as values the integers between

0 and MAX (CARDINAL).

- 52 -

BOOLEAN A variable of this type assumes
the tuth values TRUE or FALSE.
These are the only values of this type,
which is predeclared as the
enumeration BOOLEAN=(FALSE.TRUE).

A variable of this type assumes
as values the characters of the ASCHI
character set.

A variable of this type assumes
as values any subset of the
SET OF {0 .. WordSize-1].

A variable of this types assumes
the integer values between MIN
(LONGINT) and MAX (LONGINT).

This type of variable can hold
the fractional expressions between
MIN (REAL) and MAX (REAL).

This type is a parameteriess
procedure.

CHAR
BITSET
LONGINT
REAL
PROC

The type of the bounds for a subrange type, T,
is called the base type of the subrange and all op-
erators applicable to operands of type T are also ap-
plicable to variables declared with the subrange
type name. However, a value to be assigned to a
variable of a subrange type must lie within the
specified interval. If the lower bound is a non-
negadve integer, the base type of the subrange is
taken to be CARDINAL; if itis a negative integer,
it is INTEGER. The only difference from Pascal
with respect to enumeration and subrange types is
the requirement that a subrange declaration be
bracketed.

Examples:

TYPE Newint = INTEGER:
Color = (RED, BLUE, GREEN);

Cold =(-463 .. 58); (* no brackets win Pascal *)
Pnew = POINTER TO ModuleName New:

(* a qualified reference *)
Range = [BLUE..GREEN]; (*a subrange of Color =)

Letter=("a" .."z2"; (® the letters “a" 0 2" ™

Modula-2 handles type equivalence much more

stricdy than Pascal. In Pascal, it is perfectly legal
to assign variables of two different types as 100§ &S
the two types "look” alike. Two types look alike if
the component parts of the two declarations match
exactly, With Modula-2, two separate types cannot
be assigned to each other no marter how closely
their declarations match.

Example:

VAR
a: ARRAY [0.2] OF INTEGER:
b: ARRAY (0..2] OF INTEGER:

a:=b; NO! This is allowed in Pascal, but in
Modula-2, 2 and b are variables of
two different types.

1.52.1 ARRAY, SET, and POINTER types

The array and pointer types are interpreted and
referenced as in Pascal. The array declaration is a
bitdifferentin that the bounds listis defined as a list
of simple type names, enumeradons, or subranges.
The pointer declaration is more verbose than in
Pascal. The purpose is to make the declaration
“stand out” as the “A”, used in Pascal, is easily
overlooked. AsinPascal, NIL is used to specify an

"unbound pointer.

Oneof theexceptions tothe "declare before use”
ruleconcerns pointer types. Inthecase "POINTER
TO T", T is automatically treated as a forward
reference if it has not already been defined.

Examples:

TYPE Demo =
ARRAY CHAR, (RED, BLUE, GREEN) OF CHAR;
Array = ARRAY [1..9), (12 .. 347) OF CARDINAL;
pChar = POINTER TO CHAR;
pLinks = POINTER TO Links; (* forward reference *)
Links = ARRAY [1..4] OF pLinks; (® defined *)

VAR x:Demo; (*® referenced with x['j’, BLUE} *)

Sets are declared as in Pascal but the syntax for
areferencetoasetconstantisdifferent.“{"and"}"”
are used to bracket set constants, whereas Pascal

uses “[” and “]”. The element designators can be
constants or expressions. Sets are also restricted in
size o WordSize clements. This must be a
subrange of the integers between 0 and WordSize-
1, or a subrange of an enumeration type with at
most WordSize values. As a final point, a set

constant may be preceded by a type name to
document the interpretation of the element list.

Examples:

TYPE sColor = SET OF Color;
BITSET = SET OF (0 .. WordSize-1];

Set Constants
() the empty set constant
{BLUE, RED} the union of two colors
sColor{BLUE) a set consisting of one color
BITSET(0..4, 6) includes bits 0, 1,2, 3,4, 6

1.5.2.2 Record types

The syntax for the Modula-2 record type is
similar to the Pascal notation, except for the format
of the variant parts. In Pascal, the variant list is
parenthesized. In Modula-2, the variant part is
implemented as CASE selection. Each sub-decla-

- ration (case) in a variant part is delimited by a “I"”,

Also, an ELSE option is provided to denote “all
other cases”. Another difference is that variant
declaratdons can occur anywhere in a record type
declaration, whereas in Pascal, variants are re-
stricted to the end of a record declaration.

Example:

TYPE Ex = RECORD
x.y : BITSET:
CASE tag0 :Color OF (* tag0 selects the case *)
RED, GREEN: a,b: CHAR

IBLUE: c¢:INTEGER
(* “I" separates variant parts *)
END: (® case *)
z: CARDINAL;

CASE tagl : BOOLEAN OF
TRUE: u,v: INTEGER
ELSE
r.s: CARDINAL (® when agl >TRLUE *)
END: (* case *)

(

END (*Ex *)

The example contains two variant sections. The
case within the first variant is selected by the value
of “tag0”, the case within the second variant by
“tagl”. Remember that, as in Pascal, the vanant
parts of each case overlay each other in storage.

1.5.2.3 Procedure types

Unlike Pascal, Modula-2 permits variables of
procedure type that can have procedure names as
values. This fearure can be useful when the func-
tion to be performed is to be selected at runtime.
Since the procedure type is generic, thatis, it stands
for an arbitrary number of procedure names, the
identifiers in the formal parameter list are omitted;
only the type names appear. For procedure vari-
ables without a formal parameter list, the type
PROC may be used.

Examples:

TYPE
prMax = PROCEDURE(INTEGER, INTEGER)
: INTEGER;
prSecToDate =PROCEDURE(VAR Seconds) : Date;
parLess = PROC;

Procedure variables are inidalized by the as-
signment of either other procedure variables or
procedure constants, which result from procedure
declarations.

1.8.3 Variable declarations

Variable declaradons serve to introduce vari-
ables and associate each with a unique idendfier
and a fixed data type. Variables whose identifiers
appear in the same list all obtain the same type.

Examples:
VAR ij: CARDINAL;
a : ARRAY Index OF CHAR:
1.5.4 Procedure declarations

Procedure declarations consist of a procedure
heading and a block that is called the procedure

body. The heading specifies the procedure identi-
fier and the formal parameters. The block contains
declarations and statements. The procedure idend-
fierisrequired at the end of a procedure declaration
to document which procedure is being “closed”.
The primary differences from Pascal are procedure
variables, the deletion of the “function” keyword,
and the addition of the RETURN statement. Rather
than assigning to the procedure identifier to set a
return value as in Pascal, a RETURN statement
must be used.

PROCEDURE identifier (FormaiParameters] “;"
{Const | Type | Var | Procedure | Module Declaration)
(BEGIN
StatementSequence]
ENDridentifier

FormalParameters =
“(" [FPSecton (“;” FPSection}] “)" {™:" qualifiedident)

FPSection =
[VAR) identifierList “:" [ARRAY OF] qualifiedldent

qualifiedIdent = identifier (“." identifier)

The use of a FORWARD qualifier in place of a
procedure body allows a procedure 10 be refer-
enced before its declaradon. The FORWARD im-
mediately follows the procedure heading. When
the actual procedure is declared, however, the full
formal parameter list must be repeated.

Example:

PROCEDURE foo (x : CARDINAL);
FORWARD:; (® replaces tody *)

PROCEDURE fip:
BEGIN

foo (14);
END fip:

(* use before declaration *)

PROCEDURE foo (x : CARDINAL);
BEGIN

InOut. WriteCard (x,4);
END foo;

1.5.4.1 Formal parameters

Formal parameters are identifiers that denote
actual parameters specified in the procedur® call
As in Pascal, both value and variable (VAR) para-
meters are provided. Formal are local
to the procedure, L.e. their scope of reference is the
Program text that constitutes the procedure decla-
ration. .

Example:

(* Read a string of digits from the input device. *)
(* The Cardinal vaiue of the digits is returned. *)
(* Coaversion siarts when a digit is read. *)
(* Conversion stops when a non-digit is read. *)
PROCEDURE ReadCard() : CARDINAL:
VAR i: CARDINAL; ch: CHAR;
BEGIN
REPEAT (® skip characters until a digit is read *)
InOut.Read(ch);
UNTIL (ch>="0") AND (ch<="9");
i=0
REPEAT (* accumulate the number in “i” *)
i:= 10*i+(ORD(ch)>-ORD(0"™);
InOutRead(ch);
UNTIL (ch<"0™) OR (ch>"9™);
RETURN i;
END ReadCard;

The "ReadCard" routine 1ses the type transfer
function, ORD, to manipulate the numeric value of
the input character.

Any function with an empty parameter list, such
as “ReadCard”, must be declared and referenced
with the “()” suffix. The goal is to create a visual
distinction between a reference to a procedure
variable and a procedure call.

The specification of "open” array parameters
represents a significant improvement over the
static limitations of Pascal. If the parameter is an
"open" array, the form

ARRAY OF Type

must be used, where the specification of the actual
index bounds is omitted. “Type" must be compat-
ible with the element rype of the actual array, and
the index ranges are mapped onto the integers 0 to

N-1, where N is the number of elements. If the
initial array is muitidimensional, it ig mapped onto
the argument with the last subrange listed first.
That is if the array's index bounds is defined as
[0..2,0..2], the argument will be mapped
(0,01->{0}, [0,1]->(1], (0.2]->(2}, (1,0]->(3], etc.
The “HIGH™ standard function can be used to de-
termine “N-1", The example illustrates the use of
this feature in an error message routine.

PROCEDURE error(VAR message :ARRAY OF CHAR):
(* Notice: the bound for “message” is omitted *)
VAR nChar: CARDINAL;
BEGIN
WriteLn; (* skip to new line *)
FOR nChar :3 0 TO HIGH(message)DO
(® no. chars in message *)
Write(message(nChar]); (* writs the message *)

END:; (*for®)

WriteLn; (* skip to new line *)
END error;
error("short™); errorCMEDIUMIL™);

error("longest one™);

The "open” array {eature also makes it easy to
create libraries of useful routines that can operate
over a wide range of input values.

1.5.4.2 Standard procedures

The standard procedures are as follows:

ABS(x) absolute value; result Type=argType

CAP(ch) capitalize ch

CHR(x) the character with ordinal number x

FLOAT(x) converts x to a REAL value

HIGH(x) the upper bound of array x

MIN(x) the minimum value for type x

MAX(x) the maximum value for type x

ODD(x) xMOD2<0

ORD(x) ordinal number of x in its
enumeradon

SIZE(x) the number of words in type x

TRUNC(x) the LONGINT value of a REAL
or the INTEGER value of a
LONGINT

LONG(x) the LONGINT value of an
INTEGER or CARDINAL x.

VAL(T, x) is the value with ordinal number

and type T

VAL(T, ORD(x))=x, if x is of type T
DEC(x); X :mx-1;
DEC(x,n); x:=x-n;
EXCL(s,i); s:=s-{i}; removeifromsets
HALT; terminate program execution
INC(x); X = x+1;
INC(x,n); x:=x+n;
INCL(s,i); s:=s+{i):include elementiins
Examples:
ABS(-§)= 5§ ODD(3) = TRUE
CHR(65) = ‘A’ ORD(’'A’) = 65
CAP('a")= ‘A’ VAL(Color, 0) = RED

x:=8; Y3={0.4'5] '
DEC(x); x =7 DEC(x, 5); x=3
INC(x); x=9 INC(x, 5); x=13
EXCL(y, 4); y = (0,5}
INCL(y, 6); y = (0,4,5,6}

1.5.4.3 Conversion and Type transfer functions

Conversion funcdons perform the useful serv-
ice of converting one number type into another by
actually changing the argument's bit values.
FLOAT takes an INTEGER, CARDINAL, or
LONGINT value and converts it to REAL;
FLOAT's inverse, TRUNC, takes a REAL argu-
mentand converts itinto LONGINT. TRUNC also
provides the more docile but no less important role
of converting LONGINT values into INTEGER,
which involves the removal of the high-order bits.

The other conversion functions perform similar
bit additions or removals. LONG takes an INTE-
GER or CARDINAL value and makes it LONG-
INT. CHR removes the high byte of an INTEGER
or CARDINAL value tomakeitan ASCI value of
type CHAR. ORD, theinverse of CHR, adds ahigh
byte of zeroes back on to create a CARDINAL.

Type transfer functions are different from con-
version functions in that they do not change any
bits. Type transfer functions merely convert the
argument into a new type at compile ime. Of
course, the new type must have the exact size as the
old. ORD, for example, performs a dual role; it is
the conversion function mentioned above, and it
also gives the ordinal value of its argument in the
argument's enumeration. VAL is the inverse of
this. It takes the enumeration's type name and its
ordinal value and makes them into the
enumeraton's type. The other way to transfer types
is touse the type name as afunction. Again, the two
types must be of equal size. Type transfer between
CARDINAL and INTEGER is automatic on as-
signment. .

Examples:

TYPE

Arr = ARRAY (0.3] OF CARDINAL;

Rec = RECORD

m : LONGINT;
n : LONGINT;

END:
VAR

¢: CARDINAL;

i: INTEGER:

1: LONGINT:

ch: CHAR;

r: REAL;

a:Arm

r: Rec;
r:= FLOAT(42); (*r=420"
1 := TRUNC(r); (*1=42D"*)
¢ := TRUNC(); (*c=42)
1:= LONG(c) (*1=42D"%
i:= TRUNC(1): (*"i=42 %)
i:=0ORD(A"Y; *i=65 %
ch ;= CHR(i): (*ch="A""
c:=14; "c=14 %
i:=c; *i=14 %
ci=1 *c=1l4 %
a:= Armr(r); (* ris made into the armay *)

1.6 Expressions

The following table defines theinterpretation of
each operator.

v oink gd ¢ Tov Aarr(q..

MELLIENNNSNNNNN—————

Operator Meaning
+ integer addition
- integer subtraction
. ingeger multiplication
DIV integer division
MOD integer modulus

OR
p OR q means “if p then TRUE, otherwise q”

AND &
p & q means “if p then q, otherwise FALSE”

NOT ~
~ p means “if p then FALSE, otherwise TRUE"

= compare for equality
<# unequal)
< less

<= less than or equal

> greater

>= greater than or equal

x IN (sl +s2) iff (x IN s1) OR (x IN s2)

x IN (sl -s2)iff (x INsl) & ~ (x IN s2)

x IN (sl * s2) iff (x IN s1) & (x IN s2)

x IN (s1/s2) iff (x IN s1) < (x IN s52)
<= p<=qis TRUE f p is a proper subset of q
>= p>aqis TRUEIf q is a proper subset of p

IN contained in, set membership test
+
]
/

Examples:

+4=7 34=.1

7DIV4=1l 3*4 =12

7MOD4 =23 TRUE OR FALSE = TRUE
TRUE AND FALSE = FALSE

NOT TRUE = FALSE

3=4isFALSE 3o d4=TRUE
3<4=TRUE 3<=4is TRUE
3>4=FALSE 5>=4is TRUE

SIN (4,5) = TRUE {4,5) + (4.7} = (4,5.7)
(4.5) - (4,7} = (5) (4.5) * (4.7} = (4}
{4,5)/(4,7) = (57) (45} <=(4,57) =TRLE
(4.5,7) >= (4,5} = TRUE

1.7 Statements

The major difference in statement structure
from Pascal involves the elimination of the distinc-
tion between simple and compound statements. In
other words, “BEGIN S (; S} END” has been
deleted by making every structured statement a
compound statement. REPEAT, for example, was
already in this form and required no change. The
advantage of the new format is that statements can
be arbitrarily added without worrying about
whether a “BEGIN-END"” is necessary. To facili-
tate this property, we recommend that every state-
ment be terminated with a semicolon. Except for
the compound statementconvention, the following
statements are similar to the syntax used in Pascal
The WITH statement is restricted to a single record
selector.

ForStatement =

FOR identifier “:=" expression TO expression
[(BY ConstExpression] DO
StatementSequence
END(*"FOR *)

RepeatStatement =

REPEAT
StatementSequence
UNTIL expression

WhileStatement =

WHILE expression DO
StatementSequence
END (* WHILE *)

WithStatement =

WTITH recordReference DO
StatementSequence
END (* WITH*)

The Modula-2, FOR loop uses the optional BY
clause to specify the step value to be used in each
iteration. The step must be a constant. If the step is
positive, the loop counts up to the TO value. If the
step is negative, the loop counts down to the TO

value.
Examples:
FORi=3T07D0 i=3,4.5.6.7
PORi:=3TO7BY2DO 533.5.7
FORi=7TO1BY-2DO i=7,5.3.1

1.7.1 Assignments and type compatibility

The assignment serves to replace the current
value of a variable by a new value indicated by an
expression. The assignment operator is written
“:=" and is pronounced as becomes.

assignment =
variableReference “:=" expression

The type of the variable must be assignment
compatible with the type of the expression. Oper-
ands are said to be assignment compatible, if either
they are compatible, or both are of type INTEGER
or CARDINAL or subranges with base types
INTEGER or CARDINAL. Two operands of types
TO and T1 are compatble if either T1 = TO, or T1
is a subrange of TO, or TO is a subrange of T1, or if
TO and T1 are overlapping subranges of the same
base type. In the case of overlapping subranges,
rundme checks for range violations may be neces-
sary to detect errors.

1.7.2 CASE statement

The CASE statement in Modula-2 is somewhat
different than the Pascal version. First, subrange
constants are allowed as a shorthand notaton for a
range of case labels.

Pascal Modula-2
34,5,6,7: 3.7:

The subrange notaton saves ryping. Further-
more, constant expressions can also be used as case
labels. Thus. defined constants can be used to par-
ameterize selection. Finally, the “I” is used to sepa-
rate cases and an ELSE clause is adopted as a
shorthand for the label standing forall other labels.
No value may occur more than once as a case label.

- 58 -

The maximum number of cases per case statement
is 256.

CaseStatement =
CASE expression OF
Case
("I"Case}
{ELSE
StatementSequence]
END (* CASE *)

Case =
(CaseLabels (",” CaseLabeis) ":*
StatementSequence)

CaseLabels =
ConstExpression [".." ConstExpression)

Example:

(* Read a string of digits from the input device. *)
* “"and “." are allowed in the string for readability. *)
(* The Cardinal value of the digits is requrned. *)
(* Conversion starts when a digit is read. *)
(* Conversion stops when a non-digit is read. *)
PROCEDURE ReadCard() : CARDINAL;
VAR i: CARDINAL;

ch: CHAR;
BEGIN
REPEAT (* skip characters until a digit is read *)
InQutRead(ch);
UNTIL (ch>="0"") AND (ch<="9");
i=0;
LOOP (® accumulate the number in “i" *)
CASEch OF
“0”."9™ i:= 10*i+(ORD(ch)-ORD('0™);
[, e (* ignore“," and *." *)
ELSE (® stop at non-digit *)
EXTT: (* loop ®)
END: (* case *)
InOut.Read(ch);
END: (* loop *)
RETURN i:
END ReadCard;

1.7.3 IF statement

The [F statement has been modified by the
addition of an ELSIF clause whose purpose is to
provide a shorthand notation for tests that. in
Pascal, would require multiple [F statements.

[fStaatement =

[F expression THEN END; (* Lis %)
StatementSequence
(ELSIF expression THEN (*zero or more *) PROCEDURE search(list : pLisG
(*zer0 or one ELSE *) (* check to see if “antribute” is in “list™ %)
, StassmentSequence} BEGIN
ENDCIFY LOOP (* search singly-linked list *)
IF lit = NIL THEN
. EXIT:
Example: ELSIF aribute = list# astribuse THEN
‘ Pascal Modula-2 RETURN TRUE,; (* attribute is in the list *)
ifx=1then Iszl.THEN END; (*IF %
y:= 2 yi=2 list:= listA link; (* advance to next element *)
clssifx =9 then ELSIFx.=9THEN END:(‘LOOP‘)
y=3 y=3 RETURN FALSE; (*® end of list; not there *)
else ELSE END search;
y=6 y: =26
END: (* [F *)

The expressions following the symbols [F and
ELSIF are of type BOOLEAN. They are evaluated
in the sequence of their occurrence undl one yields
the value TRUE. Then, the associated statement
sequence is executed and the IF terminated. If an
ELSE clause is present, it is executed if and only if
all Boolean expressions yielded the value FALSE,
much like the ELSE in the CASE construct.

1.7.4 LOOP and EXIT statements

A loop statement specifies the continuous exe-
cution of a statement sequence. This statement is
used quite frequently in concurrent algorithms
because, unlike sequential programs, termination
isoften undesirable. Imagine what would happen if
an operating system halted after 10,000 iteradons.

The EXIT statement specifies termination of
the loop and, when executed, causes execution to
continue at the statement following the loop state-
ment. An EXTIT statement may terminate a LOOP
even if it is nested within other structured state-
ments. Only the closest, enclosing LOOP is termi-
nated.

1.7.5 RETURN statement

The RETURN statement provides a convenient
way to leave a procedure as soon as an exit condi-
tion becomes true. In Pascal, a procedure can only
be terminated by executing the “end” of the block,
which is often an inconvenience.

RETURN [expression])

In Modula-2, the RETURN statement serves the
dual role of specifying the result for a functon and

LoopStatement = of returning to the caller for both subroutines and
LOOP functions. For a subroutine, the expression must be
StatementSequence omitted. For a function, it must be present. The
END (* LOOP *) expression, representing the returned value, must
ExitStatement = EXIT match the type specified for a function.
2.0 Programming Conventions
Example:

TYPE pList = POINTER TO List:
List = RECORD
link : pList:

attnbute : Attribute:

(* a singly-linked list *)
(* alistelement =)

In addidon to the indentation conventions used
in the Modula-2 definition, you should oy to, and
we will, adhere to the following programming
conventons. Hopefully, the result will be visually
pleasing programs that are easier to understand due

to the preseace of syntactc cues.
2.1 Names and declarations

Declarations should help document the use of 2
variable; thus, try to use subrange and enmted
type declarations instead of INTEGER. Mostiden-
tifiers should be written in lower case. except for
the first letter of each new word, that should be
capitalized.

line firstLine nextLineOffset

Capitalize the first letter of type idendfiers,
module names, and the names of exported proce-
dures; capitalize all letters of CONST definidons.
If the name of a constant is several words, just
capitalize the first two letters of the first word(e.g.
CHarsPerWord). Try to use full words for all
names. However, if space is a problem, the follow-
ing shorthand convendons can be used.

Choose a short tag for each basic type that you
create, e.g. Ln for Line or Buf for Buffer. Use the
following prefixes to construct tags for derived

types:

p-pointerto: pBuf = POINTER TO Buf

i - index for: iLn = index for ARRAY OF Ln
s - set of: sColor=SET OF Color

sr- subrange of: srColor={BLUE..GREEN]

n - length of: nString=number of characters in

If you need only one variable of a given type in
a scope, use the tag as its name:

buf : Buf

If you need several names, append modifiers
(avoid simple numbers like 1, 2, etc.):

bufOld, bufNew, bufAlt : Buf
2.2 Layout

Try to follow the indentadon examples in the
Modula-2 definition. Write one statement per line,
unless several simple statements. which together
perform a single function, will fit on one line. Itis
acceptable to puta loop on asingle line if it will fit.
[fastatement will not fiton asingle line, indent the

- 60 -

continuation line(s).

A semicolon follows the last statement in a
statement sequence and the last field in a field list.
The purpose is to make insertions and deletions less
error-prone.

Each DEFINITION module should be com-
mented to describe its general function. Also, each
exported procedure should have a brief comment.
In addition, it is advisable to comment VAR para-
meters as “IN™, “OUT", or “INOUT" to denote the
presence or absence of side-effects.

2.3 Spaces

Leave a space after a comma or semicolon and
none before; leave a space before and after a colon.
Surround “:=" with spaces. A space should appear
after left-comment and before right comment.
Don’t put spaces inside brackets or parentheses or
around single-character operations.

3.0 Changes to Modula-2

The following list reflects a number of changes
to the Modula-2 definiton(5]. The changes re-
sulted from a meedng between Wirth and represen-
tatives of several firms that had implemented
Modula-2.

1. All objects declared in a definition module are
exported. The explicit export list is dis-
carded. The definition module may be re-
garded as the implementation module’s
separated and extended export list.

DEFINTTION MODULE identifier ;"
{import)
{definiton}

END idenufier .

2. The syntax of a variant record type declaration
is changed so that the “:" is always required.
The presence of the colon makes it evident
which part was omitted, if any.

CASE [idenufier] *:" qualifiedIdent OF

3. The syntax of the case statement and the variant

W6

record declaration is changed so that either
may be empty. The inclusion of the empty
case and empty variant allows the inseruon
of superfluous bars similar to the insernon of
superfluous semicolons for empty State-
ments. ,

4. Astring consisting of N characters s said to have
length N. A string of length 1 is compatible
with the type CHAR.

S. The syntax of the subrange type is changed to
allow the specification of an identfier desig-
nating the base type of the subrange. Ex-
ample: INTEGER(O .. 99].

6. The syntax of sets is changed to allow expres-
sions as set element selectors.

set = (qualifiedIdent) “{" (element (",” element}] “}”
element = expression [™..” expression]

7. The character “~” is a synonym for NOT.

8. The idendfiers LONGCARD, LONGINT, and
LONGREAL denote standard types (which
may not be available on some implementa-
dons).

9. The type ADDRESS is compatible with all
pointer types and with either LONGCARD
orLONGINT depending onthe implementa-
ton.

10. The new standard funcdons MIN and MAX
take as an argument any scalar type, includ-
ing REAL. They stand for the type’s mini-
mal/maximal value.

REFERENCES

(1 Wirth, N., Modula-2. Technical Report
No. 36, Insdrut fur Informadk der ETH Zurich,
(Dec. 1980).

(2] Wirth, N., Programming in Modula-2.
Springer-Verlag New York Inc., (1982).

{3] Wirth, N. and K. Jensen., Pascal user
manual and report. Springer-Verlag New York

- e

Inc., (1976).

(4] Wirth, N.,Modula: a language for modular
multiprogramming. Software—Practice and
E. L "nce?,(1977), 3-35.

{51 Winh,N., Schemes for multiprogramming
and their implementation in Modula-2. Technical
Report No. 59, Insttut fur Informatik der ETH
Zurich, (June 1984).

A

- 61 -

APPENDIX V

AN INTRODUCTION TO MODULAR PROGRAMMING

- 62 -

AN INTRODUCTION TO MODULAR PROGRAMMING

1.0 Introduction

Modula-2 was designed to support modular
programming. This section outlines the features of
Modula-2 which reflect that goal. Also, the
facilides of Modula-2 for systems programming
are illustrated.

Many systems today are large programs,
ranging in size from ten thousand to one-half
million lines of code. Obviously, some design
guidelines are necessary to manage the complexity
of implementing and maintaining such large
systems. The most successful approach has been to
use modular programming techniques(l] that
allow one module to be written with little
knowledge of the implementation of other modules
and that allow modules to be recompiled and
replaced without requiring recompilatdon of an
entire system. The expected benefits of modular
programming are shortened development time for
new products because modules can be
implemented by separate groups, increased
flexibility because the implementation of one
module can be changed without the need tochange
others, and increased comprehensibility because
the system can be studied one module at a time.

In system design, the first step is to partition the
specification into a number of modules with well-
defined interfaces. Atthis point, only the interfaces
are considered, not the module implementations.
Each module should be small and simple enough to
be thoroughly understood and well programmed.
The intendon is to describe all “system level”
decisions (i.e. decisions that affect more than one
module). The modularizadon must take into
account both the funcdons to be provided to

- 63 -

-

users, resulting in top-down decisions, and the
technological constraints imposed by the
possible execution environments, resulting in
bottom-up decisions.

In choosing a modularization for a system, it is
advantageous to impose a hierarchical
organizadon on the modules. A hierarchical
structure results when all modules at level i in a
system use only modules at levels lower than i
for their implementation. A module at level 0 is
implemented without referring to any other
modules. The existence of a hierarchical structure
assures us that upper levels can be deleted and
arbitrarily rebuilt. This property enhances the
extensibility, or “open’ess, of a system. If “low-
level” modules were implemented such that they
depended upon “high-level” modules, a hierarchy
would notexistand it would be much more difficult
to delete or update pordons of the system.

2.0 Modular Programming

The following table illustrates the syntax of a
compilation unit in Modula-2.

Modula-2 Program Structure

CompilatonUnit = DefinitionModule |
(IMPLEMENTATION] ProgramModule

ProgramModule =
MODULE idenufier;”
{import}
block 1dentifier .

DefinitionModule =
DEFINTTION MODULE idenufier ;"
{import}

(definition}
END identifier *.”
import = e
[FROM idencifier] IMPORT IdencifierList

exXport =
EXPORT [QUALIFIED] IdentifierList ;"
definition =
CONST (ConstantDeclaration “;"} |
TYPE (identifier {"=" type] “;"} |
VAR (VarisbleDeclaration .} |
PROCEDURE identifier (FormalParameters) ;"

A program module encapsulates the
implementation of an abstracdon. A compiler,
for example, might have modules for symbol
table lookup, reading from the input stream,
accumulating tokens, and generating code.

To meet our modularity requirements, a
module must be easily recognized. In addidon,
its functon should be easy to determine. This
does not mean examining the listing of the
entire module. In fact, for proprietary software,
the module listing may not be available. As you
will learn in this secton, Modula-2 meets, and
exceeds, all of our requirements. We start with
an example of a Modula-2 program module that
prints the integers between one and a hundred,
and their squares.

PRINT THE SQUARES OF THE INTEGERS 1..100

MODULE Main;
FROM InQut IMPORT (* Procedures *)
WriteCard, WriteString, WriteLn;
VAR i: [1..100};
BEGIN
WriteSzring("Number Number Squared™;
WriteLn;
FORi:=1TO 100 DO
WriteCard(i, 4); (* aligns number under “b" *)
WriteCard(i*i, 16); (* aligns under “S™ *)
WriteLn; (* writes end-of-line)
END; (* for *)
END Main,

- 64 -

The major difference between the Modula-2
version of the program and its Pascal equivalent
is the IMPORT list and the variety of UO
procedures. Modula-2 has no builtin /O
statements; therefore, all /O is performed with
procedures written in Modula-2. This design
decision resulted in a simpler implementaton
for the compiler but increased typing for users.

The IMPORT list is necessary to tell the
compiler where to find the definitions for the
“Write” procedures, in this case in module
“InOut”, which has been separately compiled.
The IMPORT list also enumerates the symbols
from “InOut” that are required by the “Main”
program.

“InOut” is an example of a low-level module
that can be used over and over again by high-
level modules. In fact, program modules, such
as “Main”, must always occur at the highest
system level as they can only “import”
definitions from lower-level modules like
“InOut”.

If a global variable is not listed in the
IMPORT list, it is invisible to the module. Thus,
by examining the interface specificadon at the
top of a program module, a user can determine
what services the module depends on from its
environment (useful documentation). Since the
modularization process starts by defining
module interfaces, the IMPORT list is usually
determined prior to implementation. Any
symbol that is used by a module and does not
appear in the IMPORT list must be declared in
the body of the module.

If the FROM clause in an IMPORT list is
omitted, the list of identifiers must name
modules, not symbols contained in modules. In
this case, all of the symbols occurring in the
DEFINITION partof the named modules are made
available to the program. However, these symbols
can only be referenced via a qualified name of the
form Moduleld.Symbolld. The following example

32

illustrates the qualified name option.
PRINT THE SQUARES OF THE INTEGERS 1..100
MODULE Main;

IMPORT InOut; (* only the module name *)
VAR i : [1.100};

BEGIN
InOut. WriteString("Number Number Squared™);
InOut. WriteLn;
FORi:=1TO 100 DO
InOut WriteCard(i, 4); (* aligns number under “b™ *)
InOut. WriteCard(i*i, 16); (* aligns under “S"*)
InOut. WriteLn; (* writes end-of-line *)
END:; (* for *)
END Main.

2.1 DEFINITION modules

Modula-2 permits the .defirution specifica-
ton for a module to be separated from the
module’s implementation. The two parts can be
compiled separately but must, of course, maich
with respect to declaratons. A DEFINITION
module supports information hiding by elimi-
nadng the implementatdon code. It is intended to
be standalone documentation for the users of an
abswacton. Furthermore, in most Modula-2
implementatons, the IMPLEMENTATION part
can be recompiled arbitrarily without causing
additional recompilatdons on the part of its
users. If a DEFINTTION module is recompiled,
all modules that refer to it must be recompiica.

A DEFINITION module contains only the
constant, type, variable, and procedure-head-
ing declarations that are necessary to use the
corresponding IMPLEMENTATION module.
The interface specification lists the entities that
are “export’ed to the outside world by the
module and any entites from the outside world
that are “import”ed (used) by the DEFINITION
module. The following example illustrates a
portion of the “InOut” DEFINITION module.
Notice that only the procedure headin: . are
given. The procedure bodies are specified in the

IMPLEMENTATION module for “InOut”.
THE InOut DEFINITION MODULE

(* Provides formatted 1O services for basic types *)
DEFINITION MODULE nOug

PROCEDURE WriteCard(x, n : CARDINAL);
(® write cardinal x with (at least) n characters.
If n is greater than the number of digits needed,
blanks are added preceding the number. *)
PROCEDURE WriteLn(); (* terminate the current line ®)
PROCEDURE Write(ch:CHAR);
(* write a single character *)
PROCEDURE WriteString(s : ARRAY OF CHAR);
(* write HIGH(s)+1 characters from s *)

END InOut.

The full details of types exported from DEFI-
NITION modules are visible to importing mod-
ules. If an enumeration or record type is ex-
ported, the enumerated constant and field
names are automatically exported as well. This
is termed a transparent export.

At the other extreme, it is possible to export
only a type's name. This is referred to as opague
export. The term “opaque” denotes the hiding of
the details of a type's implementation from its
users. An opaque type is declared as follows:

An Opaque Type Declaration
TYPE identifier;

In the cormresponding IMPLEMENTATION
module, an opaque type can only be declared as
a pointer or a simple type, such as CARDINAL.
Instances of opaque types can be used only for
assignment, comparison, or as arguments (o0
procedures detined in the corresponding M-
PLEMENTATION module.

2.2 IMPLEMENTATION modules

A correctly swructured module has the prop-
erty that its implementadon can be changed
without changing the pans of the program out-
side the module. This property by itself would

suffice as a reason to use Modula-2 over Pascal

Itisimportant to document the external symbols
that are used in an IMPLEMENTATION module.
Notice that the IMPORT list for the DEFINITION
and IMPLEMENTATION parts need not match.
Typically, the IMPLEMENTATION module’slist
will be longer as greater detail is necessary to 1m-
plement an abstraction as opposed to specifying it

Every IMPLEMENTATION module con-
tains an initalization part, following the
“BEGIN™, that is used to put the module into a
consistent state before program execution
starts. The initializaton code is executed by the
runtime system before the main program be-
gins. Therefore, it is unwise to put infinite loops
in an inidalization part.

The next example illustrates the use of a
DEFINITION and IMPLEMENTATION module
to define a stack manipulation udlity. The pro-
gram implements a single stack that has its size
and its element’s type chosen by its users. In the
example, “stack” and “iStack” are not exported
because they .re implementaton deuwils. By
“hiding” them, the programmer responsible for
maintaining the module can continue to refine
and improve its implementation without affect-
ing any of its users. For instance, the stack could
be implemented as a linked list rather than an
array.

In addition to serving as a convenient organ-
izatonal tool, the module also provides an in-
formadon-hiding and parameterization service.
The user of the module can call “Push”,
“SetEmpty” and “Pop”, but all implementation
details are hidden. In the example, the module
imports the type of the stack’s elements and the
size of the stack. Thus, this module could be
used to create the following varieties of stacks.

Possible Content of the “Parameters” Module

CONST MAxStackSize = 42;
TYPE StackType = INTEGER; (*a stack of 42 integers®)

CONST MAxStackSize = 97;
TYPE StackType aBOOLEAN;
(*a stack of 97 Booleans®)

The advantage of this parameterizadon is
that the stack module takes on a life of its own,
independent of any particular program. Any
algorithm that needs a stack can “check out”
this module from a system library, read its speci-
fication, set up the parameters, and not worry
about coding it. Notice that, unlike procedure
parameters, the imported type and constant are
evaluated and have their effect only at compile
time.

A Stack Manipulation Exampie

(* This module implements a single stack together with the
operators that manipulate it. To use this module, create
a Parameters module that defines MAxStackSize, which
is the number of elements desired, and StackType. *)

DEFINITION MODULE StackManipulation;

FROM Parameters IMPORT
(*Type®) StackType; (* restricted o & simple type *)

PROCEDURE Push(stackElement : StackType)
:BOOLEAN;

(* adds to top; returns FALSE if a push doesn't succeed *)

PROCEDURE Pop(VAR stackElement : StackType)
:BOOLEAN;

(* removes from top; remums FALSE if stack was empty *)

PROCEDURE SetEmpty(;

(* sets the stack to empty *)

END SwuckManipulation.

IMPLEMENTATION MODULE StackManipulaton;

(* ssseseseINTERFACE SPECIFICATION®eewnsss ")
FROM Parameters IMPORT
(*Const®) MAxStackSize, (*Type*) StackType:
(t "“'..“-..DECLI‘\RATIONS'-".""".'. -)
VAR
stack : ARRAY (1 .. MAxStackSize] OF Stack Type;
iStack : [1 .. MAxStackSize+1);

(t ”““.".[.\VPLEA'E.\TATION PART".."" -)
PROCEDURE Push(stackElement : StackType)

:BOOLEAN:
BEGIN

. -y

- 66 -

[F iStack <= MAXStackSize THEN
stack(iStack] := stackElement _
lNC(iSuck):) =(" the same as iS ack:=iSiack+1 ®)

RETURN TRUE:

EI'slfﬂ'l'UltN PALSE: | (* error-stack overflow €)

END; (* if *) '
END Push;
PROCEDURE Pop(VAR stackElement : StackType)

:BOOLEAN;

BEGIN

[F iStack > 1 THEN

"DEC(iStack); (* the same as iStack:=iStack-1*)

stackElement ;= stack(iStack];
(* exit with a value *)
RETURN TRUE;
ELSE
RETURN FALSE:
END; (* if ®)
END Pop;

(® error-stack underflow *)

PROCEDURE SetEmpty();
BEGIN

iSack :=1;
END SetEmpty;

(.‘.‘.MIZATION PAR‘I‘.‘..O.... t)
BEGIN

SetEmpty();
END StackManipulation.

2.3 Module-based abstractions

In this Sectdon, we review some of the more
common techniques for implementng a data
abstoacton. System designers must choose
among these methods when designing the user
interfaces. The previous StackManipuladon
example illustrates one of the choices. Notice
that it is restricted to implementing exactly one
stack per use of the module. The other data
abstracdon choices are to export a type, to
export an opaque type, and to export an index.
The StackManipulation module is used as an
example for each method.

2.3.1 Exported type

The first choice to implement an abstraction
is to export a type, such as “StackOflntegers”.

- 67 -

———7

The advantage of this approach is that the new
abstraction extends the language available to
the programmer. The new type can be used to
declare variables in the same way as any builtin
type like INTEGER or CHAR. Instances of these
variables are then passed as arguments to the
StackManipuladon procedures.

The disadvantage of the approach is that the
implementation details of the type are visible
and accessible to the users. As a result, a change
in representation requires a recompilation by ail
users of the module and may invalidate some
programs. Thus, this design choice should be
used with exaeme care for any user interface
provided by an operating system. Another dis-
advantage is the inability to share at runtime a
single StackManipulation module for stacks of
different type.

A Stack Manipulation Example With An Exported Type
DEFINITION MODULE StackManipulasion:

FROM Parameters IMPORT
(® Const *) MAxStackSize,
(*number of stack elements®)
(*Type*) StackType: (* the clement type *)
(* This module implements a stack type together with the
operators that manipulate it. To use this module, create
a Parameters module that defines MAxStackSize, which
is the number of elements desired, and Stack Type, which
can be of any type. *)
TYPE Stack = RECORD
iStack: [1..MAxStackSize+1];

stack : ARRAY (1. MAxStackSize] OF StackType:
END; (*Stack*®)

PROCEDURE Push(VAR stack : Stack: VAR element :
StackType):BOOLEAN:

(® adds to top: retumns FALSE if a push doesn’t succeed ™

PROCEDULRE Pop(VAR stack : Stack: VAR element
StackType):BOOLEAN:

(* pops from top 0 “element’™:

returns FALSE if stack was empty *)
PROCEDURE SetEmpty(VAR stack : Stack):
(* sets a sack to empty *)

END StackManipulauon.

2.3.2 Opaque type

The second technique uses an opaque fYPe: 3
pointer, to represent the stack abswacuon.
When the user declares instances of the Stack
type, only uninitialized pointers are allocated.
Thus, the implementation must provide a
“NewStack” operator to allocate a stack of a
particular size and a “FreeStack”™ operator to
deallocate stacks.

A Stack Manipuiation Example With An Opaque Type
DEFINITION:

TYPE Stack:
PROCEDURE NewStack(VAR stack : Stack:
stackSize : CARDINAL) :BOOLEAN:

(* allocate stack:

return FALSE on storage allocation error *)
PROCEDURE FreeStack(VAR stack:Stack):BOOLEAN;
(* deallocate stack;

return FALSE on storage allocation error *)

IMPLEMENTATION:

TYPE Stack = POINTER TO StackDescriptor;
StackDescriptor = RECORD
allocated : BOOLEAN;(® setwo TRUE by NewStack *)
size : CARDINAL; (® set from stackSize *)
iStack : {1..MAxStackSize+1];
pStack : POINTER TO ARRAY [1..MAxStackSize]
OF StackType;
END: (* StackDescriptor *)

PROCEDURE NewStack(VAR stack : Stack: stackSize :
CARDINAL) : BOOLEAN;

BEGIN

IF (stackSize=0) OR (stackSize>MAxStackSize) THEN
RETURN FALSE;

END:

Storage. ALLOCATE(stack, TSIZE(StackDescnptor));

[F stack = NIL THEN
RETURN FALSE:

END;

stack allocated := TRUE:

stack” size ‘= stackSize:

stack~.iStack := 1;

Storage. ALLOCATE(stack” pStack, stackSize);

IF stack”.pStack = NIL. THEN

- 68 -

Storage. DEALLOCATE(stack,
TSIZE (StackDescripeor));
RETURN FALSE;
END; (* if *)
RETURN TRUE:
END NewStack;

The advantage of this approach is the ability to
bind the size of a stack at runtime. Ia other words,
the IMPLEMENTATION module must allocate
the space for each new stack. The disadvantage is
again the inability to define a “class” of stacks that
would allow the component type to be specified
arbitrarily.

2.3.3 Index

The last option uses the same DEFINITION
module as the previous example. But in this case,
the opaque type isdeclared asa CARDINAL rather
than a pointer. The IMPLEMENTATION module
maintains an array of pointers to StackDescriptors.
The array index, which is used as the argument to
the module’s procedures, selects a descriptor from
the array. The pointer from the descriptor is then
used to manipulate astack, justas wasdone with the
previous example. The array simply represents an
additonal level of indirection. The advantage of
the index technique is that it supports validity
checking. That s, it is easy to determine if a given
index is really associated with a stack. Validity
checking is more difficult when using pointers
since there is no way to force a user to initialize
instances of the “Stack” type.

3.0 Low-Level Programming Facilities

In order to implement some systems in Modula-
2, itmust be possible to deal with machine depend-
encies and it must be possible to bypass the
compiler’s type checking. We discuss the latter
requirement first. (These low-level operations
should be used carefully and only when absolutelv
necessary.

3.1 Eliminating type checking
The first facility to breach Modula-2's type

checking is type transfer functions. A tYP® idend-
fiercan be used as a function to transfer 8 parameter
to the type ideatifier’s type. In most implementa-
tions, no conversion is performed; (YP® transfers
have their effect at compile time.

Type Transfer Examples

CHAR(65) = ‘A’
CARDINAL('A’) = 65
BITSET(3)+BITSET(S) = 7

3.2 The SYSTEM module

The second set of capabilities is provided by
module SYSTEM, which is “builtin” to the com-
piler. The definidon of SYSTEM is implementa-
tion dependent

Low-Level SYSTEM Facilities

DEFINITION MODULE SYSTEM:
(* IMPLEMENTATION DEPENDENT *)

TYPE

ADDRESS=POINTER TO WORD:

(*assignment compatible with pointer types®)

WORD: (* compatdble with any simple type *)
PROCEDURE ADR(x : (***ANY TYPE®***))

: ADDRESS;
(* tumns any variable reference into an ADDRESS type. *)
PROCEDURE TSIZE(x : (*ANY TYPE [DENTIFIER®))
: CARDINAL;

(* returns the number of address units that “x™ occupies.
It operates on a type's name, not on instances of the type. *)

END SYSTEM.

The SIZE (builtin) and TSIZE functions allow
the implementor to obtain machine specific infor-
madon. For example, the size of an integer array
big enough to store a 512-word disk sector can be
obtained with the expression “S512 DIV
TSIZE(INTEGER)”. Since the size of a word in
our implementation is one machine unit,
TSIZE(INTEGER) returns the value one. The use
of these functions improves the portability of an
operating system.

- 69 -

The ADDRESS and WORD types support the
implementation of generic roudnes, particularly
for [/O. Both types bypass the compiler’s rype
checking. Modula-2 also supports the conventon
that if a formal parameter is specified as ARRAY
OF WORD, then any variable, structured or un-
structured, can be supplied as an argument. The
ADR function can be used to initialize a pointer to
the address of any data structure. As an example,
the following routine takes an arbitrary array of
characters and printsitin slices of “unit” characters
at a ume.

Print Slices of Strings

PROCEDURE printSlice(VAR s:ARRAY OF WORD:
size, width: CARDINAL);
VAR
ij:CARDINAL;
¢:POINTER TO ARRAY (0..9999] OF CHAR;
BEGIN
j=0
¢ := ADR(s); (* use a pointer t0 access *)
FOR i := 0 TO size-1 DO (* byte-wise foreach *)
[nOut. Write(cA(i]);: (* char in the argument *)
INC(j);
[F j >= width THEN
(* print “width” characters *)
InOut. WriteLn; (* then start a new line *)
j:=0
END; (*if *)
END:; (* for *)
[Fj<> 0 THEN
InOut.WriteLn;
END; (* end line, if necessary *)
END printSlice:

Examples:
a:='0123456789";

pnintSlice(a, 10, 5);
printSlice(a, 10, 3):

01234 56789
012 345 678 9

pnnts
prints

3.3 Coroutines

The final low-level facility that is discussed is
the notion of a coroutine. Wirth uses this abstrac-
tiontobuild higher-leveloperating systemrounnes
to manipulate a program; for example, to assign a

from conuol of

program the CPU or to remove it al

the CPU. The coroutine operators are
to any operating system.

In a subroutine program structure, there 18 2
master/slave relationship between a calling pro-
gram and its subroutine. Usually, a subroutine has
one entry point and all iocal variables, except the
formal parameters, are undefined at entry tme.

Coroutines, on the other hand, are programs that
may call each other, butdo not have a master/slave
relationship. On exit from a coroutine, its state (i.e.
program counter, stack pointer) is saved in a vari-
able of type Coroutine; the next time the coroutine
is called, it resumes execution at exactly the point
where it previously paused. All local variables and
parameters retain their previous values.

The Coroutine type and the operators to ma-
nipulate coroutines are defined in the COROUT-
INE module, which again is machine dependent.

In Modula-2, a coroutine is created by specify-
ing a procedure, which represents the actions of the
coroutine, and a stack to hold the procedure activa-
ton records, which represent the execution state of
the procedure. Before a coroutine can be ‘“re-
sumed” for the first ime (e.g. start execution), its
state must be initalized by calling InitCoroutine.
The arguments to [nitCoroutine are a procedure as
well as a stack base address and size. The stack size
must be chosen in an applicaton-dependent way;
in fact, some architectures do not even require this
information.

The Transfer procedure implements the “res-
ume’”’ operation by saving the execudon state of the
current coroutine in a variable of type Coroutdne
and restoring the execution state of a second cor-
outine. A RETURN operadon from a coroutine
procedure is normally an error.

The COROUTINE Module

DEFINITION MODULE COROUTLNE:
(* Rouunes to tum procedures 1nto corouunes and to
mansfer conrol of the CPU from one corouune to

-t

- 70 -

another. *)

TYPE
Coroutine = POINTER TO RECORD
(® stores staze of a coroutine *)
pc : ADDRESS;
(*bare machine’s program counter *)
sp : ADDRESS;
(*bare machine's stack pointer *)
(* ANY OTHER DATA NEEDED TO
EXECUTE A Coroutine®)
END RECORD;

PROCEDURE [nitCoroutine(p:PROC; stack: ADDRESS:
stackSize:CARDINAL;
VAR (®* OUT *)coroutine:Coroutine);
(* Initializes a coroutine record for procedure “p” so
that a “Transfer” 1o “p” will start it executing. *)
PROCEDURE Transfer(VAR from, to : Coroutine);
(*® Saves the hardware registers of the executing
procedure in “from™ and then resets the registers o
the values in “10", resulting in a xransfer of control. *)

END COROUTINE.

The following example uses three coroutines to
illustrate the concepts. The first coroutine,
“getChar”,is used as a filtertoreduce all sequences
of three identcal characters to the letter “J”. Thus,
“‘abbbbabbddd” as input would result in “aJbabbJ”
as output. The second coroutine, “print”, “resu-
mes’’ the first to retrieve and print filtered charac-
ters. Since the “Main” program is initialized with
a stack, it is automatically a coroutine.

When the “getChar’ routine pauses, it leaves the
filtered character in “resultChar”. The program
stops whenitreadsa*.”, followed by any different
character. Notice that the values of “ch” and “pre-
viousChar” in “getChar” are saved across Transfer

operations.

A Corouune Example

MODULE Main:
IMPORT [nOut, COROUTINE;
VAR
stantCo, getCo, prntCo : COROUTINE.Coroutine:
stackl, stack2 : ARRAY ({1..200] OF INTEGER;
(™ stack space *)
resuitChar : CHAR:

PROCEDURE print();
BEGIN

REPEAT _
COROUTINE. Transfer(printCo. getCo):
(* resume “getChar” coroutine *)
InOut. Write(resultChar);
UNTIL resultChar = “."; (* stop on “.*" sequence *)
COROUTINE. Transfer(printCo, startCo);
(*® resume “main” program *)
END pring

PROCEDURE getChar();
VAR ch, previousChar : CHAR:
(* these values are preserved *)
BEGIN
InOut.Read(previousChar);
LooP
InOut Read(resultChar);
IF previousChar = resultChar THEN
(* do two in a row match? *)
InOut Read(resuitChar);
[F previousChar = resultChar THEN
(* do three in a row match? *)
InOut Read(previousChar);
resultChar := “J";
ELSE
ch := resultChar:

(* no, return two, then proceed *)
resultChar ;= previousChar;
COROUTINE.Transfer(getCo. printCo);

(* resume “print” *)
resultChar := previousChar;
(* falls through to Transfer *)
previousChar := ch;
END; (*if ®)
ELSE
ch := previousChar;
(* two characters are different *)
previousChar := resultCliar;
tesultChar :=ch; (*® set return value *)
END; (* if *)
COROUTINE.Transfer(getCo. printCo);
(* resume “print” coroutine *)
END: (* loop *)
END getChar;

BEGIN
COROUTINE.InitCorouune(getChar. stack]1,
SIZE(stack1), getCo);
COROUTINE.[nitCoroutine (pnnt, stack2,
SIZE(stack), printCo);
COROUTINE. Transfer(startCo, printCo);

-71 -

(* save “Main™; resume “print” *)
InOut. WriteLn;
InOut WriteString("End Of Program™):
END Main.

4.0 Compiling and Executing

The Modula-2 environment is composed of
three units: two compilers and one runtdme. The
compilers perform all the needed code generation,
and the runtime executes the code once it is se-
lected.

4.1 The Definition Compiler

The first compiler is called "d" for definidon
compiler. The definition compiler is the precursor
to the second compiler. Its job is to decipher
definition modules to produce the implementation
interface. Every file "d" receives must have the
suffix ".def". If this suffix is not supplied, the
compiler will add it automatcally. The
implementation's interface is stored in a file with
the same filename as the source code except the
suffix is changed to ".SBL". An implementation
interface is required for each reference to an im-
ported module. The compiler searches for any
needed .SBL filesin the currentdirectory. Ifitdoes
not find one, it prompts the user to input the path
name that locates the needed file.

All definition modules must be compiled before
they are used (imported). Onceadefinition module
is compiled. it should not be compiled again unless
it is extended. When a definition module is
changed, first, compile all dependent definiton
modules and then secondly, compile ail dependent
implementation modules.

4.2 The Program Compiler

The second compiler is called "¢ for compile.
This program takes the ASCII file of a program or
impiementadon module and formsitinto the object
code that the runtime uses. Files sent to the
compiler require the “.mod" suffix in order for the
compiler to recognize it as Modula-2 source code.
If the suffix is omitted, the compiler will append it

f

automatically. Also when the suffix is omitted. 1Y
error messages generated during compliation Will
be immediately printed. Object files have the Same
name as the source text with the suffix switched 10
".OBJ".

Error messages generated by either compiler
canalways be foundin the file called filename LST
where filename is the name of the file that the
compiler antempted to translate. When errors
occur, the compiler will ry to continue compila-
tion beyond the error. This is so that all errors can
be discovered before the user attempts to compile
again. When any errors occur during compilation,
neither object code nor implementation interfaces
will be generated.

4.3 The Runtime

To execute any compiled program the runtime,
"x",is called upon. Only program modules created
by the program compiler can be run. The runtime
can take no arguments; the filename must be sup-
plied only when the runtime requests it. The
runtime will ask whether the user wants to use the
race option. If the user responds "y" then the
runtime will display each line of ubject code in

" hexadecimal and octal. Unless the user under-

stands the internal object code, this option ought
not be used. When the rundme asks for the
filename two options can be used. Either the full
name can be given, or the name can be given
without the suffix following the period.

Example:

Consider the stack manipulation example as it was first
given. A carriage retumn follows every command.

First, the Parameters definition module must be created:
DEFINITION MODULE Parameters.
CONST
MAxStuackSize = 10;
TYPE
StackType = INTEGER; (* something sunpie *)

END Parameters.

- 72 -

Now, Parameters can be compiled with the definition
compiler.
Type in:

d Parameters.def

or
d Parameters

The computer will respond with:

Parameters.def
Modula-2
in>

+ Parameters.SBL.

Everything is now prepared for StackManipulation's defini-
tion module to be compiled.

Type in:
d StackManipulation.def
or
d StackManipulation

The computer will respond with:

StackManipulation.def
Modula-2

in>

Parameters: Parameters.SBL

+ StackManipulation.SBL.

The last action the user must perform is compiling the

implementation module. The program compiler is used for
this.

Type in:
¢ StackManipulation.mod
or
¢ StackManipulation

The computer will respond:
StackManipulation.mod

Modula-2

in>

StackManipulation: StackManipulation.SBL

Parameters: Parameters. SBL

+ StackManipulauon RFC....
+ StackManipulauon.OBJ 113

#_——

The first things listed are all the files the module wishes to rions of the ACM 15,12 (Dec. 1972) 1053-1058.

import. The last things listed are the new files the compiles
created and the size of these files if appropriate:

StackManipulation is now ready 10 be used in any
o Program the user creates. If the user wishes to change either
StackTyps of MAxStackSize, Parameters must be edited

and all three files must be compiled again.

Whenever a program requests the use of an
imported module, the runtime must bring that
® module into memory. The first time the runtime
encounters a reference to an imported module, the
runtime will fetch its object code into memory and
execute its initialization statements if it has any.
This is called dynamic linking. The object code
o must be located in the current directory or else the
runtime will notbe able to find it. Theinidalization
sequenceis only performed once. If many modules
import the same module, that module's initaliza-
don code will only be performed when it is first
o read in.

If the runtime encounters an error, a2 message
will be printed. Since all runtme errors are fatal to
the program, execution will immediately stop.
These are all the possible error messages that the
runtime can issue:

normal exit
HALT statement
CASE error
stack overtlow

o heap overflow
missing RETURN in a function
address error
REAL overflow
REAL underflow
bad operand

[CARDINAL overflow
INTEGER overflow
subrange or subscript error
division by zero
illegal instruction

breakpoint

REFERENCES

(1] Parnas, D.L. On the criteria to be used in de-
composing systems intomodules. Communica-

- 73 -

Modula-Z Syntax Diagrams

———"

Definition

[T

L

B

Key

Literal text:
as shown.

interpret characters

definition s
in diagrams.

Definition block:
found elsewhere

Repeat block: choose any interior
objects as often as needed (incl. 0).

Pick block: choose only one.

Compilation

Unit

Module

Definition

—-(IMPLEMENTATIO@

Program

Definition

Module

Module

—-@-:FINITION

MODULED—‘ ldentifier

O

P———'L——-"W

Declaration
Block

I
|
I
!
|
I
I

Procedure
Heading

END

I
I
l
|
|
I
l

[[dentifier

Program Module

~——(MoDULE)—

 Identifier

Y s

- 75 -

: Import :
I--_..]:__J
Block Identifier 1. }
Import
J\FROM ; Identifier {\IMPORT) Identifier O
YR
o/
- Export
EXPORT }—(QUALIFIED)- ldentifier ()
"/
Deciaration Block
P T e ——— 1
} |
' Constant : I
Tyvpe Variable
ll Declaration Declaration Declaration |

' |
| | Declaration Procedure Module I
| | Block Declaration Declaration |

{
Statement

END

Procedure Heading

——(PROCEDURE | Identifier

((- e Qualified
VAR) [dentificr ’.‘-@TQRRAY OF):I- [dentifier
)
o/

)
_/
| Qualified .\
() Identifier \/

Procedure Declaration

Module Declaration | Procedure
Heading
‘—_’QAODUL@—- Identifier —-9 |
FORWARD
I e &
[l
Import
{mP | Block
| S S
h‘ i
Export Block Identifier —— Identifier

- 76 -

Constant Declaration

T !
! Constant [
° CONST | Identifier ""(_-_) Expression _'@ |
. . | |
Lo camp . - S D — S ——— ———— — ——— — <4
Type Declaration
. i’ ————————————————————— 1
|
—(TYPE Identifier —{ =) Type L
| o/ A |
| |
b e e e e s e — — — — — . — o4
Variable Declaration
P————————————— 1
l |
VAR Field List —@ —
l I
b o o e —— o — s — o —— -
Type
Qualified Enumeration | [Subrange Array
Identifier Type Type Type
Record ' Set Pointer Procedure
Type | -ype Type Type
e

Enumeration Type

N

1 () [dentifier

()
N

-77 -

(_—

) Subrange Type
@ Constant () ‘Constan.t /1_
| Expression Expression \J
D
Array Type
e —(ARRAY) @F Type
Qualified
Identifier
Enumeration
Type
Subrange
Type
2R
N
Record Type Field Block
RECORD Field 4
Block
Field
PList
Variant
Field
List
Field List f,L
N/
[dentifier @'—"Typc
()
\/
- 78 -

S

Variant Field List

)
- e . Qualified |
CASE Identifier Q—| Identifier @

. .

Case Field

Expression Block !
L

Field
| C::) | Block ' ‘. .

o Set Type

| | Qualified Enumeration Subrange
SET CF Identifier | |Type Type

Pointer Type

———-GOINTER TO}——J Type

|

Procedure Type

~ | Qualified
—-G;OCEDURE)- (VAR -@RAY OF i ryant e

M

)

| | Qualified
Identifier

-79 -

f—

> Statement
P
Assignment | | Procedure If Case
Statement Invocation Statement Statement
®
While Repeat For Loop
Statement Statement Statement | |Statement
Exit Return With
¢ Statement Statement Statement
———
Assignment Statement

| Designator —-@— Expression p———

If Statement

Expression | 'I'I-{ENx Statement
()
o/
ELSIF
Else
Ending .

Else Ending

—— ELSE Statement ‘

)
N/

(—_—*

Case Statement

‘G: AS g)— Expression

Case Statement
| Expression
.\
e \/

Else
Ending | -

@
Case Expression
®
Constant 7\ Constant i
Expression o/ Expression \ 2
®
)
_/

While Statement

———GVHILE)-—— Expression —@ Statement (E N@—-

()
<

Repeat Statement

—-CR_EPEA}\ Statement \UNTID-—-‘Exprcssion———

)
)~

- 81 -

e ——

For

— G
' Constant
' . | Expression

Loop

Statement

| Identifier

-

Expression Expression

K‘DO >

[

Statement

Statement

Statement

Q

Statement

Exit Statement

—ExD—

Return Statement
—@TH Designator _@r@
RETURN Expression
r , J
Statement
END

Procedure Invocation

|
—{ Designator r(\ Expression ‘/)\—L,

()

N\

- 82 -

Expression

Simple Relational Simple
~ | Expression Operator Expression
Expression
'I rl Factor
Operator |-
Factor
=
Constant Set . Procedure
Expression Invocation
(Expression —-@ g Factor
——
Constant Expression
Simple Relational Simple
| Constant o Constant
. perator ,
Expression Expression
- 83 -

Simple Constant Expression
l : l Constant |
i : ' Factor
Operatior
Constant Factor
—_—
Qualified Set
Identifier Literal Constant
@_Constant __@ @ Constant
Expression ° Factor
Relational Operator Operator
— MOD)(AND
g
Precedence
highest to lowest
NOT, =~, +, - logical not,
unary plus, minus
* /, MOD multiplication
DIV, AND, & operators
+ - OR addition
operators
= # <>, < relational
<=, > »>=, IN operators
- 84 -

Qualified Identifier

@

©

O-‘ Identifier

Identifier

()

\/

Identifier

r.—..—.-...—‘-‘

-85 -

1

Set Literal
N\ Couastant Constant N
&'m" " { Expression O‘_ Expression }
o
Set Expression
alified \
g“enn'ﬁer L)1 Expression O— Expression O’J
)
U
Designator
............. -
~—1 Identifier Expression
</

00
|

Constant

Numeric| | Real Sfring
Literal Literal Literal

————
R

Numeric Literal

—(D }

{Digit }

fO‘ctgl \ e |
\Digit | ~

‘ Hexadecimal
Digit _®'—

Real Literal

—T@uH-OHeETE) ,' - ll G

String Literal

O+

—

~ 86 -

DISTRIBUTION LIST

Copy No.

1-50 U.S. Army Research Office
P.0. Box 12211
4300 S. Miami Boulevard
P Research Triangle Park, NC 27709-2211

51 Dr. David W. Hislop
Electronics Division
U.S. Army Research Office
P.0. Box 12211
4300 S. Miami Boulevard
Research Triangle Park, NC 27709-2211

52 - 53 Dr. R. P. Cock, CS
54 Dr. A. K. Jones, CS

55 - 56 Ms. E. H. Pancake, Clark Hall
57 SEAS Publications Files

* Office of Naval Research Resident
Representative
818 Connecticut Ave., N.W.
Eighth Floor
Washington, DC 20006

Attention: Mr. Michael McCracken
Administrative Contracting Officer

2157:al1ld:DW213R

UNIVERSITY OF VIRGINIA
School of Engineering and Applied Science

The University of Virginia's School of Engineering and Applied Science has an undergraduate
enroliment of approximately 1,500 students with a graduate enroliment of approximately 560. There
are 150 faculty members, a majority of whom conduct research in addition to teaching.

Research is a vital part of the educational program and interests parallel academic specialties.
These range from the classical engineering disciplines of Chemical, Civil, Electrical, and Mechanical
and Aerospace to newer, more specialized fields of Biomedical Engineering, Systems Engineering,
Materials Science, Nuclear Engineering and Engineering Physics, Applied Mathematics and Computer
Science. Within these disciplines there are well equipped laboratories for conducting highly specialized
research. All departments offer the doctorate; Biomedical and Materials Science grant only graduate
degrees. In addition, courses in the humanities are offered within the School.

The University of Virginia (which includes approximately 2,000 faculty and a total of full-time
student enroliment of about 16,400), also offers professional degrees under the schoois of Architecture,
Law, Medicine, Nursing, Commerce, Business Administration, and Education. In addition, the College
of Arts and Sciences houses departments of Mathematics, Physics, Chemistry and others relevant
to the engineering research program. The School of Engineering and Applied Science is an integral
part of this University community which provides opportunities for interdisciplinary work in pursuit
of the hasic goals of education, research, and public service.

